[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217899
O.g.f.: Sum_{n>=1} (n^2)^(n-1) * exp(-n^2*x) * x^n / n!.
12
1, 1, 6, 65, 1050, 22827, 627396, 20912320, 820784250, 37112163803, 1900842429486, 108823356051137, 6888836057922000, 477898618396288260, 36060660300744309600, 2940812098256837097720, 257780560811305783833450, 24171700822696604400643035, 2414448376056191692970387250
OFFSET
1,3
COMMENTS
For n>1, a(n) is the number of set partitions of [2*n-2] into n blocks, i.e., Stirling2(2*n-2, n). E.g., a(3) = 6: [12|3|4, 13|2|4, 1|23|4, 14|2|3, 1|24|3, 1|2|34]. - Yuchun Ji, Jan 12 2021
LINKS
FORMULA
a(n) = (1/n!) * Sum_{k=1..n} (-1)^(n-k) * binomial(n,k) * (k^2)^(n-1).
a(n) = [x^n] x + x^2/Product_{k=1..n} (1-k*x).
a(n) = [x^n] x + x^2*(1+x)^(2*n-3) / Product_{k=1..n-1} (1-k*x).
a(n) = Sum_{j=0..n-1} binomial(2*n-1,j)*Stirling2(2*n-j-1,n). - Vladimir Kruchinin, Jun 14 2013
a(n) ~ 2^(2*n-5/2) * n^(n-5/2) / (sqrt(Pi*(1-c)) * exp(n) * c^n *(2-c)^(n-2)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - Vaclav Kotesovec, May 20 2014
EXAMPLE
O.g.f.: A(x) = x + x^2 + 6*x^3 + 65*x^4 + 1050*x^5 + 22827*x^6 + 627396*x^7 + ... where A(x) = 1^0*x*exp(-1*x) + 2^2*exp(-2^2*x)*x^2/2! + 3^4*exp(-3^2*x)*x^3/3! + 4^6*exp(-4^2*x)*x^4/4! + 5^8*exp(-5^2*x)*x^5/5! + ... simplifies to a power series in x with integer coefficients.
MATHEMATICA
a[n_] := Sum[ Binomial[2*n - 3, j]*StirlingS2[2*n - j - 3, n-1], {j, 0, n-2}]; a[1] = 1; Table[a[n], {n, 1, 19}] (* Jean-François Alcover, Jun 14 2013, after Vladimir Kruchinin *)
PROG
(PARI) {a(n)=polcoeff(sum(m=1, n, (m^2)^(m-1)*x^m*exp(-m^2*x+x*O(x^n))/m!), n)}
(PARI) {a(n)=1/n!*sum(k=1, n, (-1)^(n-k)*binomial(n, k)*(k^2)^(n-1))}
(PARI) {a(n)=polcoeff(x+x^2/prod(k=1, n, 1-k*x +x*O(x^n)), n)}
(PARI) {a(n)=polcoeff(x+x^2*(1+x)^(2*n-3)/prod(k=0, n-1, 1-k*x +x*O(x^n)), n)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 14 2012
STATUS
approved