[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217897
Triangular array read by rows. T(n,k) is the number of unlabeled functions on n nodes that have exactly k fixed points, n >= 0, 0 <= k <= n.
1
1, 0, 1, 1, 1, 1, 2, 3, 1, 1, 6, 7, 4, 1, 1, 13, 19, 9, 4, 1, 1, 40, 47, 27, 10, 4, 1, 1, 100, 130, 68, 29, 10, 4, 1, 1, 291, 343, 195, 76, 30, 10, 4, 1, 1, 797, 951, 523, 220, 78, 30, 10, 4, 1, 1, 2273, 2615, 1477, 600, 228, 79, 30, 10, 4, 1, 1, 6389, 7318, 4096, 1708, 625, 230, 79, 30, 10, 4, 1, 1
OFFSET
0,7
COMMENTS
Row sums are A001372;
Column for k=0 is A001373;
Column for k=1 is A001372. (offset)
FORMULA
O.g.f.: Product_{n>=1} 1/((1-x^n)^A002862(n) * (1 - y*x^n)^A000081(n) ).
EXAMPLE
Triangle begins:
1;
0, 1;
1, 1, 1;
2, 3, 1, 1;
6, 7, 4, 1, 1;
13, 19, 9, 4, 1, 1;
40, 47, 27, 10, 4, 1, 1;
100, 130, 68, 29, 10, 4, 1, 1;
291, 343, 195, 76, 30, 10, 4, 1, 1;
797, 951, 523, 220, 78, 30, 10, 4, 1, 1;
2273, 2615, 1477, 600, 228, 79, 30, 10, 4, 1, 1;
MATHEMATICA
Needs["Combinatorica`"]; nn=30; s[n_, k_]:=s[n, k]=a[n+1-k]+If[n<2 k, 0, s[n-k, k]]; a[1]=1; a[n_]:=a[n]=Sum[a[i] s[n-1, i] i, {i, 1, n-1}]/(n-1); rt=Table[a[i], {i, 1, nn}]; cfd=Drop[Apply[Plus, Table[Take[CoefficientList[CycleIndex[CyclicGroup[n], s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i), {i, 1, nn}], {k, 1, nn}][[j]], {j, 1, nn}], x], nn], {n, 2, 30}]], 1]; CoefficientList[Series[Product[1/(1-x^i)^cfd[[i]]/(1-y x^i)^rt[[i]], {i, 1, nn-1}], {x, 0, 10}], {x, y}]//Grid (* after code given by Robert A. Russell in A000081 *)
CROSSREFS
Sequence in context: A068348 A308290 A204167 * A135900 A338072 A173272
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Oct 14 2012
STATUS
approved