[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217873
a(n) = 4*n*(n^2 + 2)/3.
4
0, 4, 16, 44, 96, 180, 304, 476, 704, 996, 1360, 1804, 2336, 2964, 3696, 4540, 5504, 6596, 7824, 9196, 10720, 12404, 14256, 16284, 18496, 20900, 23504, 26316, 29344, 32596, 36080, 39804, 43776, 48004, 52496, 57260, 62304, 67636, 73264, 79196, 85440, 92004
OFFSET
0,2
COMMENTS
Occurs as 4th column in the table A142978 of figurate numbers for n-dimensional cross polytope.
FORMULA
a(n) = 4*A006527(n).
From Peter Luschny, Oct 14 2012: (Start)
a(n) = A008412(n)/2.
a(n) = A174794(n + 1) - 1.
First differences are in A112087.
Second differences are in A008590 and A022144.
Binomial transformation of (a(n), n > 0) is A082138. (End)
G.f.: 4*x*(1 + x^2) / (x - 1)^4. - R. J. Mathar, Oct 15 2012
a(0)=0, a(1)=4, a(2)=16, a(3)=44, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)- a(n-4). - Harvey P. Dale, Mar 16 2015
MATHEMATICA
Table[4n(n^2 + 2)/3, {n, 0, 39}] (* Alonso del Arte, Oct 22 2012 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 4, 16, 44}, 50] (* Harvey P. Dale, Mar 16 2015 *)
PROG
(PARI) a(n)=(n^2+2)*n/3*4
(Maxima) makelist(4*n*(n^2+2)/3, n, 0, 41); /* Martin Ettl, Oct 15 2012 */
(Magma) [4*n*(n^2+2)/3: n in [0..45]]; // Vincenzo Librandi, Nov 08 2012
CROSSREFS
Sequence in context: A161142 A259013 A212960 * A289086 A018210 A054498
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Oct 13 2012
STATUS
approved