[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217864
Number of prime numbers between floor(n*log(n)) and (n + 1)*log(n + 1).
0
0, 2, 2, 2, 0, 2, 1, 2, 2, 1, 1, 2, 0, 1, 2, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 2, 1, 0, 0, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 0, 2, 2, 0, 0, 1, 0, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 2, 2, 0, 1, 0, 1, 3, 2, 0, 0, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 1, 1
OFFSET
1,2
COMMENTS
Conjecture: a(n) is unbounded.
If Riemann Hypothesis is true, this is probably true as the PNT is generally a lower bound for Pi(n).
Conjecture: a(n)=0 infinitely often.
The first conjecture follows from Dickson's conjecture. The second conjecture follows from a theorem of Brauer & Zeitz on prime gaps. - Charles R Greathouse IV, Oct 15 2012
REFERENCES
A. Brauer and H. Zeitz, Über eine zahlentheoretische Behauptung von Legendre, Sitz. Berliner Math. Gee. 29 (1930), pp. 116-125; cited in Erdos 1935.
LINKS
Paul Erdős, On the difference of consecutive primes, Quart. J. Math., Oxford Ser. 6 (1935), pp. 124-128.
EXAMPLE
log(1)=0 and 2*log(2) ~ 1.38629436112. Hence, a(1)=0.
Floor(2*log(2)) = 1 and 3*log(3) ~ 3.295836866. Hence, a(2)=2.
MATHEMATICA
Table[s = Floor[n*Log[n]]; PrimePi[(n+1) Log[n+1]] - PrimePi[s] + Boole[PrimeQ[s]], {n, 100}] (* T. D. Noe, Oct 15 2012 *)
PROG
(JavaScript)
function isprime(i) {
if (i==1) return false;
if (i==2) return true;
if (i%2==0) return false;
for (j=3; j<=Math.floor(Math.sqrt(i)); j+=2)
if (i%j==0) return false;
return true;
}
for (i=1; i<88; i++) {
c=0;
for (k=Math.floor(i*Math.log(i)); k<=(i+1)*Math.log(i+1); k++) if (isprime(k)) c++;
document.write(c+", ");
}
(PARI) a(n)=sum(k=n*log(n)\1, (n+1)*log(n+1), isprime(k)) \\ Charles R Greathouse IV, Oct 15 2012
CROSSREFS
An alternate version of A166712.
Sequence in context: A028930 A112792 A138319 * A002100 A108352 A346149
KEYWORD
nonn
AUTHOR
Jon Perry, Oct 13 2012
STATUS
approved