[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215797
Numbers k such that k*(k+1)/2 + 1 is a power of 2.
4
0, 1, 2, 5, 90
OFFSET
1,3
COMMENTS
No other terms < 10^6. - T. D. Noe, Aug 25 2012
This sequence maps to the Ramanujan-Nagell squares (8*(k*(k+1)/2)+1) and is therefore complete. - Raphie Frank, Aug 26 2012
All terms in this sequence follow form floor[2^((2*x - 1)/2)]; x = {0, 1, 2, 3, 7}. - Raphie Frank, Mar 03 2013
FORMULA
a(n) = -1 + ceiling[sqrt(2^(A060728(n) - 2) - 1)]. - Raphie Frank, Mar 31 2013
a(n) = (|(((1+i*sqrt(7))/2)^(A060728(n) - 2) + ((1-i*sqrt(7))/2)^(A060728(n) - 2))| - 1)/2. - Raphie Frank, Dec 25 2013
MATHEMATICA
Select[Range[0, 1000], IntegerQ[Log[2, 1 + #(#+1)/2]]&] (* T. D. Noe, Aug 25 2012 *)
PROG
(PARI) for(n=0, 100, if(ispolygonal(2^n-1, 3), print1(sqrtint(2*2^n-2)", "))) \\ Charles R Greathouse IV, Mar 04 2013
CROSSREFS
Cf. A060728, A038198 (two references to the Ramanujan-Nagell problem).
Sequence in context: A057978 A093308 A319230 * A262325 A290871 A162569
KEYWORD
nonn,fini,full
AUTHOR
V. Raman, Aug 23 2012
STATUS
approved