Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Sep 08 2022 08:46:03
%S 3,-6,18,-63,234,-891,3429,-13257,51354,-199098,772173,-2995218,
%T 11619045,-45073827,174857211,-678335958,2631522330,-10208681991,
%U 39603398850,-153636822171,596016389349,-2312177133105,8969825761002
%N a(n) = - 6*a(n-1) - 9*a(n-2) - 3*a(n-3) with a(0)=3, a(1)=-6, a(2)=18.
%C The Berndt-type sequence number 2 for the argument 2Pi/9 . Similarly like the respective sequence number 1 -- see A215455 -- the sequence a(n) is connected with the following general recurrence relation: X(n+3) + 6*X(n+2) + 9*X(n+1) + ((2*cos(3*g))^2)*X(n) = 0, X(0)=3, X(1)=-6, X(2)=18. The Binet formula for this one has the form: X(n) = (-4)^n*((cos(g))^(2*n) + cos(g+Pi/3))^(2*n) + cos(g-Pi/3))^(2*n)) - for details see Witula-Slota's reference and comments to A215455.
%C The characteristic polynomial of a(n) has the form x^3 + 6*x^2 + 9*x + 3 = (x + (2*cos(Pi/18))^2)*(x+(2*cos(5*Pi/18))^2)*(x+(2*cos(7*Pi/18))^2). We note that (2*cos(Pi/18))^2 = 2 - c(4), (2*cos(5*Pi/18))^2 = 2 - c(2), and (2*cos(7*Pi/18))^2 = 2 - c(1), where c(j) = 2*cos(2*Pi*j/9) - see trigonometric relations for A215455. Furthermore all numbers a(n)*3^(-ceiling((n+1)/3)) are integers.
%D R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
%H Vincenzo Librandi, <a href="/A215634/b215634.txt">Table of n, a(n) for n = 0..1000</a>
%H R. Witula, D. Slota, <a href="https://doi.org/10.1016/j.jmaa.2005.12.020">On modified Chebyshev polynomials</a>, J. Math. Anal. Appl., 324 (2006), 321-343.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-6,-9,-3).
%F a(n) = (-4)^n*((cos(Pi/18))^(2*n) + (cos(5*Pi/18))^(2*n) + (cos(7*Pi/18))^(2*n)).
%F G.f.: (3 + 12*x + 9*x^2)/(1 + 6*x + 9*x^2 + 3*x^3).
%F a(n)*(-1)^n = s(1)^(2*n) + s(2)^(2*n) + s(4)^(2*n), where s(j) := 2*sin(2*Pi*j/9) -- for the proof see Witula's book. The respective sums with odd powers of sines in A216757 are given. - _Roman Witula_, Sep 15 2012
%t LinearRecurrence[{-6,-9,-3}, {3,-6,18}, 50]
%t CoefficientList[Series[(3 + 12 x + 9 x^2)/(1 + 6 x + 9 x^2 + 3 x^3), {x, 0, 33}], x] (* _Vincenzo Librandi_, Aug 30 2017 *)
%o (PARI) Vec((3+12*x+9*x^2)/(1+6*x+9*x^2+3*x^3)+O(x^99)) \\ _Charles R Greathouse IV_, Sep 27 2012
%o (Magma) I:=[3,-6,18]; [n le 3 select I[n] else -6*Self(n-1)-9*Self(n-2)-3*Self(n-3): n in [1..30]]; // _Vincenzo Librandi_, Aug 30 2017
%Y Cf. A215455, A215635, A215636, A215664, A215885, A215665, A215666, A215829, A215831, A215917, A215919, A215945, A216034, A215948, A216757.
%K sign,easy
%O 0,1
%A _Roman Witula_, Aug 18 2012