[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215608
Decimal expansion of the "value" -Sum_{n>=1} (-1)^n / n^(1/n).
0
6, 3, 7, 0, 9, 2, 0, 8, 5, 8, 9, 8, 4, 9, 4, 7, 4, 7, 9, 1, 1, 2, 5, 5, 6, 0, 8, 1, 7, 1, 2, 8, 4, 5, 1, 5, 5, 4, 4, 0, 1, 8, 3, 1, 4, 0, 1, 5, 9, 6, 0, 4, 6, 7, 2, 3, 8, 7, 8, 0, 0, 0, 6, 5, 8, 2, 2, 1, 5
OFFSET
0,1
COMMENTS
The sum actually diverges. But by Cohen Villegas Zagier's acceleration methods for alternating series the sum converges to 0.637092...
Challenge: find a convergent expression for this constant. [Joerg Arndt, Aug 19 2012]
LINKS
Henri Cohen, Fernando Rodriguez Villegas, Don Zagier, Convergence acceleration of alternating series, Experimental Mathematics, vol.9, no.1, pp.3-12, (2000).
EXAMPLE
0.637092085898494747911255608171284515544018314015960467238780006582215...
MATHEMATICA
digits = 69; a[n_] := 1/n^(1/n); a[0] = 0; Clear[f]; f[n_] := f[n] = (d = (3+Sqrt[8])^n; d = (d+1/d)/2; b = 1; c = d; s = 0; For[k = 0, k <= n-1, k++, c = b-c; s = s+c*a[k]; b = (k+n)*(k-n)*b / ((k+1/2)*(k+1))]; s/d) // RealDigits[#, 10, digits] & // First; f[0] ; f[n = 10] ; While[f[n] != f[n-10], n = n+10]; f[n] (* Jean-François Alcover, Mar 06 2013 *)
digits = 69; a[n_] := 1/n^(1/n); a[0] = 0; Clear[f]; f[n_] := f[n] = (d = (3+Sqrt[8])^n; d = (d+1/d)/2; b = 1; c = d; s = 0; For[k = 0, k <= n-1, k++, c = b-c; s = s+c*a[k]; b = (k+n)*(k-n)*b / ((k+1/2)*(k+1))]; s/d) // RealDigits[#, 10, digits] & // First; f[0] ; f[n = 10] ; While[ f[n] != f[n-10], n = n+10]; f[n] (* Jean-François Alcover, Mar 06 2013 *)
PROG
(PARI)
default(realprecision, 99);
c=-sumalt(n=1, (-1)^n/sqrtn(n, n)) /* 0.6370920858... */
v=Vec(Str(c)); /* ["0", ".", "6", "3", "7", ...] */
v=vector(#v-1, n, v[n+1]); v[1]=0;
v215608=eval(v) /* sequence of digits */
/* Joerg Arndt, Aug 19 2012 */
CROSSREFS
Cf. A073009.
Sequence in context: A024563 A319232 A265179 * A232883 A119643 A187747
KEYWORD
cons,nonn
AUTHOR
Balarka Sen, Aug 17 2012
STATUS
approved