Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Apr 29 2020 05:54:12
%S 3,6,18,57,186,621,2109,7251,25146,87726,307293,1079370,3798309,
%T 13382817,47191491,166501902,587670810,2074699233,7325660010,
%U 25869337773,91359785781,322660334739,1139593274178,4024976418198,14216179376325,50211881768346,177350652641349
%N a(n) = 6*a(n-1) - 9*a(n-2) + a(n-3), with a(0)=3, a(1)=6 and a(2)=18.
%C The Berndt-type sequence number 1 for the argument 2*Pi/9 (see also A215007, A215008) is connected with the following trigonometric identities: f(n;x)=g(n;x)=const for n=1,2 (and are equal to 6 and 18 respectively), f(n;x)+g(n;x)=const for n=3,4,5 (and are equal to 120, 420 and 1512 respectively). Moreover each of the functions f(3;x), g(3;x) and f(6;x)+g(6;x) is not the constant function. Here f(n;x) := (2*cos(x))^(2n) + (2*cos(x-Pi/3))^(2n) + (2*cos(x+Pi/3))^(2n), and g(n;x) := (2*sin(x))^(2n) + (2*cos(x-Pi/6))^(2n) + (2*cos(x+Pi/6))^(2n), for every n=1,2,..., and x in R (see Witula-Slota paper for details).
%H Andrew Howroyd, <a href="/A215455/b215455.txt">Table of n, a(n) for n = 0..500</a>
%H R. Witula and D. Slota, <a href="http://dx.doi.org/10.1016/j.jmaa.2005.12.020">On modified Chebyshev polynomials</a>, J. Math. Anal. Appl., 324 (2006), 321-343.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-9,1).
%F a(n) = c(1)^(2*n) + c(2)^(2*n) + c(4)^(2*n), where c(j) = 2*cos(Pi*j/9).
%F G.f.: 3*(1 - x)*(1 - 3*x)/(1 - 6*x + 9*x^2 - x^3).
%F a(n) = 3*A094831(n). - _Andrew Howroyd_, Apr 28 2020
%e From the identity c(j)^2 = 2 + c(2*j) we deduce that a(1)=6 is equivalent with c(2) + c(4) + c(8) = 0, where c(j) := 2*cos(Pi*j/9).
%t LinearRecurrence[{6,-9,1}, {3,6,18}, 50]
%o (PARI) Vec((3-12*x+9*x^2)/(1-6*x+9*x^2-x^3)+O(x^99)) \\ _Charles R Greathouse IV_, Sep 27 2012
%Y Cf. A094831, A215007, A215008.
%K nonn,easy
%O 0,1
%A _Roman Witula_, Aug 11 2012
%E Terms a(22) and beyond from _Andrew Howroyd_, Apr 28 2020