[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215455
a(n) = 6*a(n-1) - 9*a(n-2) + a(n-3), with a(0)=3, a(1)=6 and a(2)=18.
12
3, 6, 18, 57, 186, 621, 2109, 7251, 25146, 87726, 307293, 1079370, 3798309, 13382817, 47191491, 166501902, 587670810, 2074699233, 7325660010, 25869337773, 91359785781, 322660334739, 1139593274178, 4024976418198, 14216179376325, 50211881768346, 177350652641349
OFFSET
0,1
COMMENTS
The Berndt-type sequence number 1 for the argument 2*Pi/9 (see also A215007, A215008) is connected with the following trigonometric identities: f(n;x)=g(n;x)=const for n=1,2 (and are equal to 6 and 18 respectively), f(n;x)+g(n;x)=const for n=3,4,5 (and are equal to 120, 420 and 1512 respectively). Moreover each of the functions f(3;x), g(3;x) and f(6;x)+g(6;x) is not the constant function. Here f(n;x) := (2*cos(x))^(2n) + (2*cos(x-Pi/3))^(2n) + (2*cos(x+Pi/3))^(2n), and g(n;x) := (2*sin(x))^(2n) + (2*cos(x-Pi/6))^(2n) + (2*cos(x+Pi/6))^(2n), for every n=1,2,..., and x in R (see Witula-Slota paper for details).
LINKS
R. Witula and D. Slota, On modified Chebyshev polynomials, J. Math. Anal. Appl., 324 (2006), 321-343.
FORMULA
a(n) = c(1)^(2*n) + c(2)^(2*n) + c(4)^(2*n), where c(j) = 2*cos(Pi*j/9).
G.f.: 3*(1 - x)*(1 - 3*x)/(1 - 6*x + 9*x^2 - x^3).
a(n) = 3*A094831(n). - Andrew Howroyd, Apr 28 2020
EXAMPLE
From the identity c(j)^2 = 2 + c(2*j) we deduce that a(1)=6 is equivalent with c(2) + c(4) + c(8) = 0, where c(j) := 2*cos(Pi*j/9).
MATHEMATICA
LinearRecurrence[{6, -9, 1}, {3, 6, 18}, 50]
PROG
(PARI) Vec((3-12*x+9*x^2)/(1-6*x+9*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roman Witula, Aug 11 2012
EXTENSIONS
Terms a(22) and beyond from Andrew Howroyd, Apr 28 2020
STATUS
approved