[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215171
G.f.: exp( Sum_{n>=1} A002203(n)^4 * x^n/n ), where A002203 is the companion Pell numbers.
0
1, 16, 776, 23856, 834596, 28135056, 957599096, 32515276336, 1104679254346, 37525681919856, 1274775209167896, 43304782313176656, 1471088177488196276, 49973690736096892016, 1697634414511896630376, 57669596280038205388752, 1959068639950002397935907
OFFSET
0,2
COMMENTS
More generally, exp(Sum_{k>=1} A002203(k)^(2*n) * x^k/k) = 1/(1 - (-1)^n*x)^binomial(2*n,n) * Product_{k=1..n} 1/(1 - (-1)^(n-k)*A002203(2*k)*x - x^2)^binomial(2*n,n-k).
Compare to g.f. exp(Sum_{k>=1} A002203(k) * x^k/k) = 1/(1-2*x-x^2).
FORMULA
G.f.: 1/((1-x)^6*(1+6*x+x^2)^4*(1-34*x+x^2)).
EXAMPLE
G.f.: A(x) = 1 + 16*x + 776*x^2 + 23856*x^3 + 834596*x^4 + 28135056*x^5 +...
where
log(A(x)) = 2^4*x + 6^4*x^2/2 + 14^4*x^3/3 + 34^4*x^4/4 + 82^4*x^5/5 + 198^4*x^6/6 + 478^4*x^7/7 + 1154^4*x^8/8 +...+ A002203(n)^4*x^n/n +...
PROG
(PARI) {A002203(n)=polcoeff(2*x*(1+x)/(1-2*x-x^2+x*O(x^n)), n)}
{a(n)=polcoeff(exp(sum(k=1, n, A002203(k)^4*x^k/k)+x*O(x^n)), n)}
(PARI) {A002203(n)=polcoeff(2*x*(1+x)/(1-2*x-x^2+x*O(x^n)), n)}
{a(n, m=2)=polcoeff(1/(1 - (-1)^m*x+x*O(x^n))^binomial(2*m, m) * prod(k=1, m, 1/(1 - (-1)^(m-k)*A002203(2*k)*x + x^2+x*O(x^n))^binomial(2*m, m-k)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 05 2012
STATUS
approved