[go: up one dir, main page]

login
A215124
Number of solid standard Young tableaux of shape [[(n-2)*2,2],[n-2]].
2
0, 0, 0, 8, 174, 2084, 21025, 194064, 1694224, 14232672, 116228871, 928763000, 7294771770, 56497996620, 432520209420, 3278863236544, 24649138276800, 183964353480832, 1364323157872947, 10061883449658936, 73839952091271730, 539488089621673500
OFFSET
0,4
COMMENTS
a(n) is odd if and only if n = 2*k and k >= 3 and k in { A118113 }.
LINKS
S. B. Ekhad, D. Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux, arXiv:1202.6229v1 [math.CO], 2012
Wikipedia, Young tableau
FORMULA
For n > 3, a(n) = 3*(n-1) * (3*n-8) * (-576 + 937*n - 486*n^2 + 81*n^3) * (3*n-10)! / (2 * (n-4)! * (2*n-3)!). - Vaclav Kotesovec, Sep 02 2014
MAPLE
a:= proc(n) option remember; `if`(n<4, [0, 0, 0, 8][n+1],
3*(n-1)*(3*n-8)*(3*n-10)*(937*n-486*n^2+81*n^3-576)*a(n-1)
/(2*(n-2)^2*(2*n-3)*(2152*n-729*n^2+81*n^3-2080)))
end:
seq(a(n), n=0..30);
MATHEMATICA
Flatten[{0, 0, 0, 8, Table[3*(n-1) * (3*n-8) * (-576 + 937*n - 486*n^2 + 81*n^3) * (3*n-10)! / (2 * (n-4)! * (2*n-3)!), {n, 4, 20}]}] (* Vaclav Kotesovec, Sep 02 2014 *)
CROSSREFS
Column k=2 of A215122.
Sequence in context: A303285 A061492 A263461 * A138783 A067637 A357503
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 03 2012
STATUS
approved