[go: up one dir, main page]

login
A215011
a(n) = least k>0 such that triangular(n) divides Fibonacci(k).
3
1, 4, 12, 15, 20, 8, 24, 12, 60, 10, 60, 84, 56, 40, 60, 18, 36, 36, 90, 120, 40, 120, 24, 300, 175, 252, 72, 168, 140, 60, 60, 60, 180, 360, 120, 228, 342, 252, 420, 60, 40, 88, 660, 60, 120, 48, 48, 168, 1400, 900, 252, 189, 108, 180, 120, 72, 252, 406, 1740
OFFSET
1,2
COMMENTS
Triangular(n)=n*(n+1)/2 is the n-th triangular number.
EXAMPLE
Triangular(2)=3, least k>0 such that 3 divides Fibonacci(k) is k=4, so a(2)=4.
MATHEMATICA
lk[n_]:=Module[{k=1, t=(n(n+1))/2}, While[Mod[Fibonacci[k], t]!=0, k++]; k]; Array[lk, 60] (* Harvey P. Dale, Jun 19 2021 *)
PROG
(Python)
TOP = 333
prpr = y = 0
prev = k = 1
res = [-1]*TOP
while y<TOP-1:
for i in range(1, TOP):
if res[i]<0 and prev % int(i*(i+1)/2) == 0:
res[i] = k
y += 1
curr = prpr+prev
prpr = prev
prev = curr
k += 1
for i in range(1, TOP):
print(res[i], end=', ')
CROSSREFS
Cf. A085779 (least k such that triangular(n) divides k!).
Cf. A001177 (least k such that n divides Fibonacci(k)).
Cf. A132632 (least k such that n^2 divides Fibonacci(k)).
Cf. A132633 (least k such that n^3 divides Fibonacci(k)).
Cf. A215453 (least k such that n^n divides Fibonacci(k)).
Cf. A214528 (least k such that n! divides Fibonacci(k)).
Sequence in context: A256706 A340869 A103020 * A024353 A024354 A020883
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Aug 08 2012
STATUS
approved