[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203945
Symmetric matrix based on (1,0,0,1,0,0,1,0,0,...), by antidiagonals.
3
1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0
OFFSET
1,25
COMMENTS
Let s be the periodic sequence (1,0,0,1,0,0,...) and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A203945 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A203946 for characteristic polynomials of principal submatrices of M, with interlacing zeros.
EXAMPLE
Northwest corner:
1...0...0...1...0...0...1
0...1...0...0...1...0...0
0...0...1...0...0...1...0
1...0...0...2...0...0...2
0...1...0...0...2...0...0
MATHEMATICA
t = {1, 0, 0}; t1 = Flatten[{t, t, t, t, t, t, t, t}];
s[k_] := t1[[k]];
U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[
Table[s[k], {k, 1, 15}]];
L = Transpose[U]; M = L.U; TableForm[M]
m[i_, j_] := M[[i]][[j]];
Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
CROSSREFS
Sequence in context: A242192 A016380 A341354 * A212663 A341774 A015692
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jan 08 2012
STATUS
approved