[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202364
Number of n-permutations with at least one cycle of length >=4.
2
0, 0, 0, 0, 6, 54, 444, 3828, 34404, 331812, 3457224, 38902104, 472682088, 6185876904, 86896701072, 1305666612144, 20907918062064, 355572850545648, 6401460197543904, 121637573726005152, 2432837939316094944, 51090380436082401504, 1123995659389121919168
OFFSET
0,5
COMMENTS
a(n) = n! - A057693(n). - Vaclav Kotesovec, Oct 09 2013
REFERENCES
R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, page 358.
LINKS
FORMULA
E.g.f.: 1/(1-x) - exp(x + x^2/2 + x^3/3).
MAPLE
b:= proc(n) option remember; `if`(n<4, [6, 54, 444, 3828][n+1],
((5*n+3+n^2)*b(n-1) -(n+3)*b(n-2) -(n+3)*(n+2)*b(n-3)
-(n+3)*(n+2)*(n+1)^2*b(n-4))/n)
end:
a:= n-> `if`(n<4, 0, b(n-4)):
seq(a(n), n=0..30); # Alois P. Heinz, Jan 09 2013
MATHEMATICA
nn=25; Range[0, nn]!CoefficientList[Series[1/(1-x)-Exp[x+x^2/2+x^3/3], {x, 0, nn}], x]
(* Second program: *)
b[n_] := b[n] = If[n<4, {6, 54, 444, 3828}[[n+1]], ((5*n+3+n^2)*b[n-1] - (n + 3)*b[n-2] - (n+3)*(n+2)*b[n-3] - (n+3)*(n+2)*(n+1)^2*b[n-4])/n]; a[n_] := If[n<4, 0, b[n-4]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 08 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jan 09 2013
STATUS
approved