[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201551
Number of arrays of n integers in -7..7 with sum zero.
3
1, 1, 15, 169, 2255, 30381, 418503, 5832765, 82073295, 1163205475, 16581420835, 237481736823, 3414582082055, 49258226347903, 712601187601395, 10334165623697259, 150186639579545295, 2186774434431445455, 31893473567409732813, 465851764737061437765
OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..400 (terms 1..210 from R. H. Hardin) [It was suggested that the initial terms of this b-file were wrong, but in fact they are correct. - N. J. A. Sloane, Jan 19 2019]
FORMULA
a(n) ~ sqrt(3) * 15^n / (4*sqrt(7*Pi*n)). - Vaclav Kotesovec, Dec 15 2018
EXAMPLE
Some solutions for n=5
.-6....6....2...-1...-4...-5...-2...-2....4...-6....2....7...-5...-5....3....5
.-2....0....7...-3....2....6...-3....7...-4...-2...-7...-3....6....2...-3...-7
..0...-6...-5...-2....6....5....5...-5...-6....5....5....1...-4....4....1...-4
..2...-2...-4....0...-7...-5....6...-7....6....6...-5....1....4....5...-3....7
..6....2....0....6....3...-1...-6....7....0...-3....5...-6...-1...-6....2...-1
MAPLE
seq(add((-1)^k*binomial(n, k)*binomial(8*n-15*k-1, n-1), k = 0..floor(n/2)), n = 0..20); # Peter Bala, Oct 19 2024
MATHEMATICA
a[n_] := If[n==0, 1, Coefficient[Expand[Sum[x^k, {k, 0, 14}]^n], x^(7n)]]; Array[a, 25, 0] (* Amiram Eldar, Dec 14 2018 *)
PROG
(PARI) {a(n) = polcoeff((sum(k=0, 14, x^k))^n, 7*n, x)} \\ Seiichi Manyama, Dec 14 2018
CROSSREFS
Column 7 of A201552.
Sequence in context: A016279 A036734 A201041 * A339770 A240276 A206600
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 02 2011
EXTENSIONS
a(0)=1 prepended by Seiichi Manyama, Dec 14 2018
STATUS
approved