[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201218
Number of partitions of n such that the number of parts and the largest part and the smallest part are pairwise coprime.
2
1, 1, 1, 3, 2, 5, 6, 12, 13, 22, 25, 40, 47, 69, 85, 126, 148, 204, 249, 330, 404, 531, 647, 835, 1022, 1300, 1591, 2006, 2432, 3029, 3678, 4541, 5477, 6711, 8056, 9805, 11735, 14178, 16918, 20356, 24195, 28963, 34372, 40978, 48486, 57626, 68001, 80540, 94826
OFFSET
1,4
LINKS
EXAMPLE
a(4) = 3: [1,1,1,1], [1,1,2], [1,3];
a(5) = 2: [1,1,1,1,1], [1,2,2];
a(6) = 5: [1,1,1,1,1,1], [1,1,1,1,2], [1,1,1,3], [1,1,4], [1,5];
a(7) = 6: [1,1,1,1,1,1,1], [1,1,1,2,2], [1,1,1,1,3], [1,1,2,3], [1,2,4], [1,1,5];
a(8) = 12: [1,1,1,1,1,1,1,1], [1,1,1,1,1,1,2], [1,1,2,2,2], [1,1,1,2,3], [1,2,2,3], [1,1,3,3], [1,1,1,1,4], [1,3,4], [1,1,1,5], [1,2,5], [3,5], [1,7].
MAPLE
b:= proc(n, j, t, s) option remember;
add(b(n-i, i, t+1, s), i=j..iquo(n, 2))+
`if`(igcd(t, s)=1 and igcd(t, n)=1 and igcd(n, s)=1, 1, 0)
end:
a:= n-> `if`(n=1, 1, add(b(n-i, i, 2, i), i=1..iquo(n, 2))):
seq(a(n), n=1..60);
MATHEMATICA
b[n_, j_, t_, s_] := b[n, j, t, s] = Sum[b[n-i, i, t+1, s], {i, j, Quotient[n, 2]}] + If[GCD[t, s] == 1 && GCD[t, n] == 1 && GCD[n, s] == 1, 1, 0]; a[n_] := If[n == 1, 1, Sum [b[n-i, i, 2, i], {i, 1, Quotient[n, 2]}]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Oct 07 2014, translated from Maple *)
CROSSREFS
Cf. A199890.
Sequence in context: A240574 A050061 A058638 * A139140 A047074 A303766
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 28 2011
STATUS
approved