[go: up one dir, main page]

login
A200886
T(n,k) is the number of 0..k arrays x(0..n+1) of n+2 elements without any interior element greater than both neighbors.
13
7, 22, 12, 50, 51, 21, 95, 144, 121, 37, 161, 325, 422, 292, 65, 252, 636, 1121, 1268, 704, 114, 372, 1127, 2507, 3985, 3823, 1691, 200, 525, 1856, 4977, 10213, 14288, 11472, 4059, 351, 715, 2889, 9052, 22736, 42182, 50995, 34350, 9749, 616, 946, 4300, 15393
OFFSET
1,1
COMMENTS
T(n,k) is the number of lattice points in k*P where P is a polytope of dimension n+2 in R^(n+2) whose vertices are lattice points, and therefore for each n it is an Ehrhart polynomial of degree n+2. This confirms the empirical formulas for the rows. - Robert Israel, Mar 21 2021
LINKS
FORMULA
Empirical for columns:
k=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3)
k=2: a(n) = 3*a(n-1) -3*a(n-2) +4*a(n-3) -a(n-4) +a(n-5)
k=3: a(n) = 4*a(n-1) -6*a(n-2) +10*a(n-3) -5*a(n-4) +6*a(n-5) -a(n-6) +a(n-7)
k=4: a(n) = 5*a(n-1) -10*a(n-2) +20*a(n-3) -15*a(n-4) +21*a(n-5) -7*a(n-6) +8*a(n-7) -a(n-8) +a(n-9)
k=5: a(n) = 6*a(n-1) -15*a(n-2) +35*a(n-3) -35*a(n-4) +56*a(n-5) -28*a(n-6) +36*a(n-7) -9*a(n-8) +10*a(n-9) -a(n-10) +a(n-11)
k=6: a(n) = 7*a(n-1) -21*a(n-2) +56*a(n-3) -70*a(n-4) +126*a(n-5) -84*a(n-6) +120*a(n-7) -45*a(n-8) +55*a(n-9) -11*a(n-10) +12*a(n-11) -a(n-12) +a(n-13)
k=7: a(n) = 8*a(n-1) -28*a(n-2) +84*a(n-3) -126*a(n-4) +252*a(n-5) -210*a(n-6) +330*a(n-7) -165*a(n-8) +220*a(n-9) -66*a(n-10) +78*a(n-11) -13*a(n-12) +14*a(n-13) -a(n-14) +a(n-15)
Empirical for rows:
n=1: a(k) = (2/3)*k^3 + (5/2)*k^2 + (17/6)*k + 1
n=2: a(k) = (1/3)*k^4 + (7/3)*k^3 + (14/3)*k^2 + (11/3)*k + 1
n=3: a(k) = (2/15)*k^5 + (11/6)*k^4 + (35/6)*k^3 + (23/3)*k^2 + (68/15)*k + 1
n=4: a(k) = (2/45)*k^6 + (19/15)*k^5 + (217/36)*k^4 + (71/6)*k^3 + (2057/180)*k^2 + (27/5)*k + 1
n=5: a(k) = (4/315)*k^7 + (7/9)*k^6 + (241/45)*k^5 + (1067/72)*k^4 + (3757/180)*k^3 + (1145/72)*k^2 + (2629/420)*k + 1
n=6: a(k) = (1/315)*k^8 + (134/315)*k^7 + (21/5)*k^6 + (571/36)*k^5 + (1841/60)*k^4 + (6047/180)*k^3 + (26603/1260)*k^2 + (299/42)*k + 1
n=7: a(k) = (2/2835)*k^9 + (131/630)*k^8 + (2803/945)*k^7 + (1349/90)*k^6 + (41449/1080)*k^5 + (20423/360)*k^4 + (1149293/22680)*k^3 + (22741/840)*k^2 + (2011/252)*k + 1
EXAMPLE
Some solutions for n=4, k=3:
1 2 3 0 0 1 2 3 0 1 2 3 3 1 2 2
1 2 1 0 1 0 1 0 3 0 2 2 3 0 3 2
2 2 3 0 2 2 3 2 3 0 3 3 3 1 3 0
2 0 3 0 3 3 3 3 2 0 3 3 3 1 0 2
1 1 2 1 3 3 2 3 0 1 3 3 3 1 2 3
0 2 2 1 3 2 1 0 2 1 2 1 1 3 3 3
Table starts:
....7....22.....50......95......161.......252.......372........525........715
...12....51....144.....325......636......1127......1856.......2889.......4300
...21...121....422....1121.....2507......4977......9052......15393......24817
...37...292...1268....3985....10213.....22736.....45648......84681.....147565
...65...704...3823...14288....42182....105813....235538.....478467.....904111
..114..1691..11472...50995...173606....491533...1215616....2710413....5567530
..200..4059..34350..181336...710976...2269938...6233356...15250675...34054592
..351..9749.102896..644721..2908797..10462235..31868448...85473225..207289059
..616.23422.308419.2294193.11911516..48259083.163014678..479101189.1261310492
.1081.56268.924532.8166441.48807427.222798408.834763824.2688814689.7684922749
CROSSREFS
Column 1 is A005251(n+5).
Row 1 is A002412(n+1).
Sequence in context: A130740 A101119 A217014 * A070412 A286572 A055575
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 23 2011
STATUS
approved