[go: up one dir, main page]

login
A200060
Number of -n..n arrays x(0..5) of 6 elements with zero sum and elements alternately strictly increasing and strictly decreasing.
1
10, 178, 1098, 4172, 11962, 28554, 59910, 114232, 202314, 337902, 538054, 823496, 1218978, 1753638, 2461350, 3381092, 4557298, 6040218, 7886274, 10158420, 12926498, 16267598, 20266414, 25015604, 30616142, 37177686, 44818926, 53667948
OFFSET
1,1
COMMENTS
Row 6 of A200057.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) -2*a(n-2) -a(n-3) +2*a(n-5) -a(n-6) -a(n-7) +2*a(n-8) -a(n-10) -2*a(n-11) +3*a(n-12) -a(n-13).
Empirical g.f.: 2*x*(5 + 74*x + 292*x^2 + 622*x^3 + 910*x^4 + 1045*x^5 + 999*x^6 + 782*x^7 + 452*x^8 + 162*x^9 + 24*x^10 + x^11) / ((1 - x)^6*(1 + x)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, May 17 2018
EXAMPLE
Some solutions for n=6:
..3...-3...-2....4....4...-2...-5....0....1....1....2....1....1...-2...-3...-1
..5...-2...-3....3....5...-6....3....2...-6...-2....5...-6...-2....3....2....6
.-5...-4....3....5...-4....6....2...-3....0....5...-1....1....6...-2....1...-3
.-3....3...-5...-6...-2....0....5....4...-4...-6....2...-2...-6....2....3....0
.-6....1....5...-2...-5....6...-3...-6....6....6...-5....6....1...-3...-6...-2
..6....5....2...-4....2...-4...-2....3....3...-4...-3....0....0....2....3....0
CROSSREFS
Cf. A200057.
Sequence in context: A053537 A049380 A302105 * A240561 A057122 A261177
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 13 2011
STATUS
approved