[go: up one dir, main page]

login
A200065
Start with n, concatenate its trivial divisors, and repeat until a prime is reached. a(n) = 0 if no prime is ever reached.
1
0, 0, 13, 0, 0, 0, 17, 0, 19, 0, 1111111111111111111, 0, 113, 0, 0, 0, 1117, 0, 11119, 0, 111121, 0, 1123, 0, 0, 0, 127, 0, 1129, 0, 131, 0
OFFSET
1,3
COMMENTS
a(33) has 715 digits and is too large to include.
a(A065502(n)) = 0. There are other integers for which a(n) = 0 (i.e., n = 221).
The number (10^270343 - 1)/9 appears 161046 times in this sequence.
All odd primes from A096497 are in the sequence.
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..1032
EXAMPLE
17 -> {1, 17} = 117 (composite) -> {1, 117} = 1117 (prime), so a(17) = 1117.
MATHEMATICA
lst = {}; Do[If[DivisorSigma[0, n] == 1 || Divisible[n, 5] || EvenQ[n], AppendTo[lst, 0], If[PrimeQ[n], n = 10^Length[IntegerDigits[n]] + n]; While[True, If[PrimeQ[n], Break[]]; n = FromDigits[Flatten[IntegerDigits[{1, n}]]]]; AppendTo[lst, n]], {n, 32}]; lst
CROSSREFS
Sequence in context: A127708 A094896 A277118 * A067155 A277255 A255288
KEYWORD
base,nonn
AUTHOR
STATUS
approved