[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208759
Triangle of coefficients of polynomials u(n,x) jointly generated with A208760; see the Formula section.
3
1, 1, 2, 1, 4, 6, 1, 6, 16, 16, 1, 8, 30, 56, 44, 1, 10, 48, 128, 188, 120, 1, 12, 70, 240, 504, 608, 328, 1, 14, 96, 400, 1080, 1872, 1920, 896, 1, 16, 126, 616, 2020, 4512, 6672, 5952, 2448, 1, 18, 160, 896, 3444, 9352, 17856, 23040, 18192, 6688, 1, 20, 198, 1248, 5488, 17472, 40600, 67776, 77616, 54976, 18272
OFFSET
1,3
COMMENTS
For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 18 2012
FORMULA
u(n,x) = u(n-1,x) + 2*x*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + 2*x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 18 2012: (Start)
As DELTA-triangle with 0 <= k <= n:
G.f.: (1-2y*x-2*y^2*x^2)/(1-x-2*y*x-2*y^2*x^2).
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + 2*T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k < 0 or if k > n. (End)
EXAMPLE
First five rows:
1;
1, 2;
1, 4, 6;
1, 6, 16, 16;
1, 8, 30, 56, 44;
First five polynomials u(n,x):
1
1 + 2x
1 + 4x + 6x^2
1 + 6x + 16x^2 + 16x^3
1 + 8x + 30x^2 + 56x^3 + 44x^4
From Philippe Deléham, Mar 18 2012: (Start)
(1, 0, 0, 0, 0, ...) DELTA (0, 2, 1, -1, 0, 0, ...) begins:
1;
1, 0;
1, 2, 0;
1, 4, 6, 0;
1, 6, 16, 16, 0;
1, 8, 30, 56, 44, 0;
1, 10, 48, 128, 188, 120, 0; (End)
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208759 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208760 *)
Rest[CoefficientList[CoefficientList[Series[(1-2*y*x-2*y^2*x^2)/(1-x-2*y*x- 2*y^2*x^2), {x, 0, 20}, {y, 0, 20}], x], y]//Flatten] (* G. C. Greubel, Mar 28 2018 *)
CROSSREFS
Sequence in context: A208915 A199704 A062344 * A033877 A059369 A369518
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 02 2012
EXTENSIONS
Terms a(58) onward added by G. C. Greubel, Mar 28 2018
STATUS
approved