[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208210
a(n)=(a(n-1)^2*a(n-2)^3+1)/a(n-3) with a(0)=a(1)=a(2)=1.
5
1, 1, 1, 2, 5, 201, 2525063, 10355298070412763074, 8589063344901709900442551790362661608528200120823830773
OFFSET
0,4
COMMENTS
This is the case a=3, b=2, y(0)=y(1)=y(2)=1 of the recurrence shown in the Example 3.2 of "The Laurent phenomenon" (see Link lines, p. 10).
The next term -- a(9) -- has 161 digits. - Harvey P. Dale, Apr 14 2022
LINKS
Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, arXiv:math/0104241v1 [math.CO] (2001).
Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, Advances in Applied Mathematics 28 (2002), 119-144.
FORMULA
From Vaclav Kotesovec, May 20 2015: (Start)
a(n) ~ c1^(d1^n) * c2^(d2^n) * c3^(d3^n), where
d1 = -1.198691243515997113071999692569776193916276872472594369204332359716...
d2 = 0.2864620650316004980582127604312427653427138786836169481458128553091...
d3 = 2.9122291784843966150137869321385334285735629937889774210585195044073...
are the roots of the equation d^3 + 1 = 2*d^2 + 3*d and
c1 = 0.9326266928252752296152676800592959458631493222642463226349218269187...
c2 = 0.2535475214701961189033928082745089316567819534655391761010907360554...
c3 = 1.0248087086665041891835364490857429725941144848712661648932932629036...
(End)
MAPLE
a:=proc(n) if n<3 then return 1: fi: return (a(n-1)^2*a(n-2)^3+1)/a(n-3): end: seq(a(i), i=0..10);
MATHEMATICA
a[0] = a[1] = a[2] = 1; a[n_] := a[n] = (a[n-1]^2*a[n-2]^3 + 1)/a[n-3];
Array[a, 10, 0] (* Jean-François Alcover, Dec 14 2017 *)
nxt[{a_, b_, c_}]:={b, c, (c^2 b^3+1)/a}; NestList[nxt, {1, 1, 1}, 10][[All, 1]] (* Harvey P. Dale, Apr 14 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Matthew C. Russell, Apr 23 2012
STATUS
approved