[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206429
Triangular array read by rows. T(n,k) is the number of rooted labeled trees on n nodes such that the root node has degree k. n>=2, 1<=k<=n-1.
7
2, 6, 3, 36, 24, 4, 320, 240, 60, 5, 3750, 3000, 900, 120, 6, 54432, 45360, 15120, 2520, 210, 7, 941192, 806736, 288120, 54880, 5880, 336, 8, 18874368, 16515072, 6193152, 1290240, 161280, 12096, 504, 9, 430467210, 382637520, 148803480, 33067440, 4592700, 408240, 22680, 720
OFFSET
2,1
LINKS
Andrew Howroyd, Table of n, a(n) for n = 2..1276 (first 50 rows)
Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 179.
FORMULA
E.g.f.: x*exp(y * T(x)) where T(x) is the e.g.f. for A000169.
EXAMPLE
Triangle begins:
2;
6 3;
36 24 4;
320 240 60 5;
3750 3000 900 120 6;
54432 45360 15120 2520 210 7;
MATHEMATICA
nn=10; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; f[list_]:=Select[list, #>0&]; Map[f, Drop[Transpose[Table[Range[0, nn]!CoefficientList[Series[x t^k/k!, {x, 0, nn}], x], {k, 1, 8}]], 2]]//Flatten
PROG
(PARI) T(n)={my(f=serreverse(x*exp(-x + O(x^n)))); [Vecrev(p/y) | p<-Vec(serlaplace(x*exp(y*f) - x))]}
{ my(A=T(7)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 22 2020
CROSSREFS
Column 1 is A055541.
Row sums are A000169.
Sequence in context: A284003 A172031 A111678 * A101819 A177761 A128192
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Feb 07 2012
STATUS
approved