[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206278
Total number of triangles in Cayley graph Cay(Z_{2^n}, QR*(2^n)).
1
0, 0, 128, 1024, 6656, 53248, 387072, 3096576, 24092672, 192741376, 1530822656, 12246581248, 97793998848, 782351990784, 6255953838080, 50047630704640, 400335237545984, 3202681900367872, 25620722214764544, 204965777718116352, 1639714493699194880, 13117715949593559040, 104941539947077173248, 839532319576617385984
OFFSET
3,3
LINKS
Reinaldo E. Giudici and Aurora A. Olivieri, Quadratic modulo 2n Cayley graphs, Discrete Math. 215 (2000), no. 1-3, 73-79. See T(n) in Theorem 3.1.
FORMULA
G.f.: 128*x^5*(32*x^2-1) / ((2*x-1)*(2*x+1)*(4*x-1)*(4*x+1)*(8*x-1)). - Colin Barker, Jul 23 2013
MAPLE
f:=n-> if n mod 2 = 1 then
(1/45)*(2^(3*(n-1))+5*2^(2*n-1)-7*2^(n+2));
else
(1/45)*(2^(3*(n-1))+5*2^(2*n)-7*2^(n+4));
fi;
[seq(f(n), n=3..40)];
MATHEMATICA
CoefficientList[Series[128 x^2 (32 x^2 - 1) / ((2 x - 1) (2 x + 1) (4 x - 1) (4 x + 1) (8 x - 1)), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 21 2016 *)
LinearRecurrence[{8, 20, -160, -64, 512}, {0, 0, 128, 1024, 6656}, 30] (* Harvey P. Dale, May 31 2019 *)
CROSSREFS
Sequence in context: A183972 A143708 A130813 * A100628 A344303 A221599
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 05 2012
STATUS
approved