[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205575
Triangle read by rows, related to Pascal's triangle.
4
1, 1, 0, 2, 2, 1, 3, 5, 4, 1, 5, 12, 14, 8, 2, 8, 25, 38, 32, 15, 3, 13, 50, 94, 104, 71, 28, 5, 21, 96, 215, 293, 260, 149, 51, 8, 34, 180, 468, 756, 822, 612, 304, 92, 13, 55, 331, 980, 1828, 2346, 2136, 1376, 604, 164, 21
OFFSET
0,4
COMMENTS
Antidiagonal sums are in A052980, row sums are in A046717.
Similar to A091533 and to A091562. Triangle satisfying the same recurrence as A091533 and A091562, but with the initial values T(0,0) = 1, T(0,1) = 1, T(1,1) = 0.
FORMULA
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) + T(n-2,k-2) for n>=2, k>=0, with initial conditions specified by first two rows. T(0,0) = 1, T(1,0) = 1, T(1,1) = 0.
EXAMPLE
Triangle begins :
1
1, 0
2, 2, 1
3, 5, 4, 1
5, 12, 14, 8, 2
8, 25, 38, 32, 15, 3
13, 50, 94, 104, 71, 28, 5
PROG
(PARI) T(n, k) = {if(n<0, return(0)); if (n==0, if (k<0, return(0)); if (k==0, return(1))); if (n==1, if (k<0, return(0)); if (k==0, return(1)); if (k==1, return(0))); T(n-1, k)+T(n-1, k-1)+T(n-2, k)+T(n-2, k-1)+T(n-2, k-2); } \\ Michel Marcus, Oct 27 2021
CROSSREFS
Cf. Column 0: A000045, Diagonals : A000045, A029907, A036681.
Cf. A090171, A090172, A090173, A090174, A091533, A091562 (same recurrence).
Sequence in context: A099514 A228352 A303911 * A368338 A344583 A349414
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Jan 29 2012
EXTENSIONS
a(46), a(48) corrected by Georg Fischer, Oct 27 2021
STATUS
approved