[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205503
G.f.: exp( Sum_{n>=1} x^n/n * exp( Sum_{k>=1} binomial(2*n*k,n*k)*x^(n*k)/k ) ).
1
1, 1, 3, 8, 27, 79, 292, 900, 3369, 11131, 41742, 139002, 546529, 1829265, 7113275, 24903332, 96838366, 335955634, 1345392796, 4673507879, 18615675149, 66574809640, 262503701044, 933024442958, 3796054662682, 13418892324198, 53794826244366, 195768193280117
OFFSET
0,3
FORMULA
G.f.: exp( Sum_{n>=1} C_n(x^n)^2 * x^n/n ) where C_n(x^n) = Product_{k=0..n-1} C( exp(2*Pi*I*k/n)*x ), where C(x) is the Catalan function (A000108).
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 27*x^4 + 79*x^5 + 292*x^6 + 900*x^7 +...
By definition:
log(A(x)) = (1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 +...)*x
+ (1 + 6*x^2 + 53*x^4 + 554*x^6 + 6362*x^8 + 77580*x^10 +...)*x^2/2
+ (1 + 20*x^3 + 662*x^6 + 26780*x^9 + 1205961*x^12 +...)*x^3/3
+ (1 + 70*x^4 + 8885*x^8 + 1409002*x^12 + 250837850*x^16 +...)*x^4/4
+ (1 + 252*x^5 + 124130*x^10 + 77652264*x^15 +...)*x^5/5
+ (1 + 924*x^6 + 1778966*x^12 + 4405846676*x^18 +...)*x^6/6 +...
+ exp( Sum_{k>=1} binomial(2*n*k,n*k)*x^(n*k)/k )*x^n/n +...
Explicitly,
log(A(x)) = x + 5*x^2/2 + 16*x^3/3 + 69*x^4/4 + 211*x^5/5 + 992*x^6/6 + 3004*x^7/7 + 13797*x^8/8 + 45745*x^9/9 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*exp(sum(k=1, n\m, binomial(2*m*k, m*k)*x^(m*k)/k)+x*O(x^n)))), n)}
CROSSREFS
Sequence in context: A305049 A332833 A148823 * A242537 A323795 A148824
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 27 2012
STATUS
approved