Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Apr 08 2017 18:38:03
%S 0,5,20,160,1130,8927,71630,594405,5025740,43243674,377127756,
%T 3327001441,29634744950,266164547110,2407763862342,21918167505714,
%U 200631620380132,1845576127894008,17052050519557200,158176470846492722
%N Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than 5.
%C Column 5 of A205341.
%H R. H. Hardin, <a href="/A205338/b205338.txt">Table of n, a(n) for n = 1..210</a>
%F a(n) = Sum_{i=1..n}((Sum_{l=0..i}(binomial(i,l)*(Sum_{j=0..(5*(i-l))/11}((-1)^j*binomial(i-l,j)*binomial(-l+5*(-l-2*j+i)-j+i-1,5*(-l-2*j+i)-j)))*(-1)^l))*a(n-i))/n, a(0)=1. - _Vladimir Kruchinin_, Apr 07 2017
%e Some solutions for n=5:
%e ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
%e ..5....5....5....2....5....5....4....2....3....2....2....2....4....1....3....1
%e ..8....6...10....3....8....4....6....1....5....5....6....5....7....4....1....4
%e ..3....9....9....0....5....0....2....5....0....4....1....3....4....5....2....7
%e ..1....4....5....3....2....2....3....2....1....3....4....4....2....3....1....3
%e ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
%o (Maxima)
%o a(n):=if n=0 then 1 else sum((sum(binomial(i,l)*(sum((-1)^j*binomial(i-l,j)*binomial(-l+5*(-l-2*j+i)-j+i-1,5*(-l-2*j+i)-j),j,0,(5*(i-l))/11))*(-1)^l,l,0,i))*a(n-i),i,1,n)/n; /* _Vladimir Kruchinin_, Apr 07 2017 */
%K nonn
%O 1,2
%A _R. H. Hardin_, Jan 26 2012