[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204579
Triangle read by rows: matrix inverse of the central factorial numbers T(2n, 2k) (A036969).
5
1, -1, 1, 4, -5, 1, -36, 49, -14, 1, 576, -820, 273, -30, 1, -14400, 21076, -7645, 1023, -55, 1, 518400, -773136, 296296, -44473, 3003, -91, 1, -25401600, 38402064, -15291640, 2475473, -191620, 7462, -140, 1, 1625702400, -2483133696, 1017067024, -173721912, 14739153, -669188, 16422, -204, 1
OFFSET
1,4
COMMENTS
This is a signed version of A008955 with rows in reverse order. - Peter Luschny, Feb 04 2012
LINKS
José L. Cereceda, Sums of powers of integers and the sequence A304330, arXiv:2405.05268 [math.GM], 2024. See p. 6.
FORMULA
T(n, k) = (-1)^(n-k)*A008955(n, n-k). - Peter Luschny, Feb 05 2012
T(n, k) = Sum_{i=k-n..n-k} (-1)^(n-k+i)*s(n,k+i)*s(n,k-i) = Sum_{i=0..2*k} (-1)^(n+i)*s(n,i)*s(n,2*k-i), where s(n,k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 07 2012
From Peter Bala, Aug 29 2012: (Start)
T(n, k) = T(n-1, k-1) - (n-1)^2*T(n-1, k). (Recurrence equation.)
Let E(x) = cosh(sqrt(2*x)) = Sum_{n >= 0} x^n/{(2*n)!/2^n} and
L(x) = 2*{arcsinh(sqrt(x/2))}^2 = Sum_{n >=1} (-1)^n*(n-1)!^2*x^n/{(2*n)!/2^n}.
L(x) is the compositional inverse of E(x) - 1.
A generating function for the triangle is E(t*L(x)) = 1 + t*x + t*(-1 + t)*x^2/6 + t*(4 - 5*t + t^2)*x^3/90 + ..., where the sequence of denominators [1,1,6,90,...] is given by (2*n)!/2^n. Cf. A008275 with generating function exp(t*log(1+x)).
The e.g.f. is E(t*L(x^2/2)) = cosh(2*sqrt(t)*arcsinh(x/2)) = 1 + t*x^2/2! + t*(t-1)*x^4/4! + t*(t-1)*(t-4)*x^6/6! + .... (End)
From Peter Luschny, Feb 29 2024: (Start)
T(n, k) = [z^(2*k)] z^2*Product_{j=1..n-1} (z^2 - j^2).
T(n, k) = (2*n)! * [t^k] [x^(2*n)] (w^sqrt(t) + w^(-sqrt(t)))/2 where w = (x/2 + sqrt(1 + (x/2)^2)^2. (End)
T(n, k) = [x^k] (-1)^n * Pochhammer(1 - sqrt(x), n) * Pochhammer(1 + sqrt(x), n), assuming offset 0. - Peter Luschny, Aug 03 2024
EXAMPLE
Triangle starts:
[1] 1;
[2] -1, 1;
[3] 4, -5, 1;
[4] -36, 49, -14, 1;
[5] 576, -820, 273, -30, 1;
[6] -14400, 21076, -7645, 1023, -55, 1;
[7] 518400, -773136, 296296, -44473, 3003, -91, 1;
[8] -25401600, 38402064, -15291640, 2475473, -191620, 7462, -140, 1;
MAPLE
# From Peter Luschny, Feb 29 2024: (Start)
ogf := n -> local j; z^2*mul(z^2 - j^2, j = 1..n-1):
Trow := n -> local k; seq(coeff(expand(ogf(n)), z, 2*k), k = 1..n):
# Alternative:
f := w -> (w^sqrt(t) + w^(-sqrt(t)))/2: egf := f((x/2 + sqrt(1 + (x/2)^2))^2):
ser := series(egf, x, 20): cx := n -> coeff(ser, x, 2*n):
Trow := n -> local k; seq((2*n)!*coeff(cx(n), t, k), k = 1..n): # (End)
# Assuming offset 0:
rowpoly := n -> (-1)^n * pochhammer(1 - sqrt(x), n) * pochhammer(1 + sqrt(x), n):
row := n -> local k; seq(coeff(expand(rowpoly(n)), x, k), k = 0..n):
seq(print(row(n)), n = 0..7); # Peter Luschny, Aug 03 2024
MATHEMATICA
rows = 10;
t[n_, k_] := 2*Sum[j^(2*n)*(-1)^(k - j)/((k - j)!*(k + j)!), {j, 1, k}];
T = Table[t[n, k], {n, 1, rows}, {k, 1, rows}] // Inverse;
Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 14 2018 *)
PROG
(PARI) select(concat(Vec(matrix(10, 10, n, k, T(n, k)/*from A036969*/)~^-1)), x->x)
(Sage)
def A204579(n, k): return (-1)^(n-k)*A008955(n, n-k)
for n in (0..7): print([A204579(n, k) for k in (0..n)]) # Peter Luschny, Feb 05 2012
CROSSREFS
Cf. A036969, A008955, A008275, A121408, A001044 (column 1), A101686 (alternating row sums), A234324 (central terms).
Sequence in context: A110519 A286796 A286718 * A113095 A157784 A274615
KEYWORD
sign,tabl
AUTHOR
M. F. Hasler, Feb 03 2012
EXTENSIONS
Typo in data corrected by Peter Luschny, Feb 05 2012
STATUS
approved