[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204462
Number of 2*n-element subsets that can be chosen from {1,2,...,12*n} having element sum n*(12*n+1).
1
1, 6, 318, 32134, 4083008, 587267282, 91403537276, 15027205920330, 2572042542065646, 454018964549333284, 82122490665668040962, 15150820045467016057500, 2841258381788564812646472, 540201085284535788002286246, 103917818379993516623446237348
OFFSET
0,2
COMMENTS
a(n) is the number of partitions of n*(12*n+1) into 2*n distinct parts <=12*n.
EXAMPLE
a(1) = 6 because there are 6 2-element subsets that can be chosen from {1,2,...,12} having element sum 13: {1,12}, {2,11}, {3,10}, {4,9}, {5,8}, {6,7}.
MAPLE
b:= proc(n, i, t) option remember;
`if`(i<t or n<t*(t+1)/2 or n>t*(2*i-t+1)/2, 0,
`if`(n=0, 1, b(n, i-1, t) +`if`(n<i, 0, b(n-i, i-1, t-1))))
end:
a:= n-> b(n*(12*n+1), 12*n, 2*n):
seq(a(n), n=0..12);
MATHEMATICA
b[n_, i_, t_] /; i<t || n<t(t+1)/2 || n>t(2i-t+1)/2 = 0; b[0, _, _] = 1;
b[n_, i_, t_] := b[n, i, t] = b[n, i-1, t] + If[n<i, 0, b[n-i, i-1, t-1]];
a[n_] := b[n(12n+1), 12n, 2n];
a /@ Range[0, 10] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
CROSSREFS
Bisection of row n=6 of A204459.
Sequence in context: A074656 A233108 A207816 * A135397 A042421 A221884
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 18 2012
STATUS
approved