[go: up one dir, main page]

login
A204293
Pascal's triangle interspersed with rows of zeros, and the rows of Pascal's triangle are interspersed with zeros.
6
1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 6, 0, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 5, 0, 10, 0, 10, 0, 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 6, 0, 15, 0, 20
OFFSET
0,13
COMMENTS
Auxiliary array for computing Losanitsch's triangle A034851;
T(n, k) + T(n, k + 2) = T(n + 2, k + 2) for k < n - 1.
LINKS
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
Eric Weisstein's World of Mathematics, Losanitsch's Triangle
FORMULA
T(n, k) = (1 - n mod 2) * (1 - k mod 2) * binomial(floor(n/2),floor(k/2)).
MATHEMATICA
t[n_?EvenQ, k_?EvenQ] := Binomial[n/2, k/2]; t[_, _] = 0; Flatten[Table[t[n, k], {n, 0, 12}, {k, 0, n}]] (* Jean-François Alcover, Feb 07 2012 *)
PROG
(Haskell)
a204293 n k = a204293_tabl !! n !! k
a204293_row n = a204293_tabl !! n
a204293_tabl = [1] : [0, 0] : f [1] [0, 0] where
f xs ys = xs' : f ys xs' where
xs' = zipWith (+) ([0, 0] ++ xs) (xs ++ [0, 0])
CROSSREFS
Cf. A077957 (row sums), A126869 (central terms); A108044, A007318.
Sequence in context: A037047 A118917 A325045 * A206479 A219484 A060396
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Jan 14 2012
EXTENSIONS
Formula for T(n,k) corrected by Peter Bala, Jul 06 2015
STATUS
approved