Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Oct 21 2015 09:43:50
%S 1,10,50,252,754,3500,8450,34680,89635,309140,700402,2910600,5688370,
%T 20195500,50706500,160553712,329639810,1248615550,2398289458,
%U 8732957688,19306982500,56865638380,119281100930,461838762000,853941516771
%N a(n) = sigma_2(n)*Pell(n), where sigma_2(n) = A001157(n), the sum of squares of divisors of n.
%C Compare g.f. to the Lambert series identity: Sum_{n>=1} n^2*x^n/(1-x^n) = Sum_{n>=1} sigma_2(n)*x^n.
%H Harvey P. Dale, <a href="/A204272/b204272.txt">Table of n, a(n) for n = 1..1000</a>
%F G.f.: Sum_{n>=1} n^2*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} sigma_2(n)*Pell(n)*x^n, where Pell(n) = A000129(n) and A002203 is the companion Pell numbers.
%e G.f.: A(x) = x + 10*x^2 + 50*x^3 + 252*x^4 + 754*x^5 + 3500*x^6 +...
%e where A(x) = x/(1-2*x-x^2) + 2^2*2*x^2/(1-6*x^2+x^4) + 3^2*5*x^3/(1-14*x^3-x^6) + 4^2*12*x^4/(1-34*x^4+x^8) + 5^2*29*x^5/(1-82*x^5-x^10) + 6^2*70*x^6/(1-198*x^6+x^12) +...+ n^2*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +...
%t With[{nn=30},Times@@@Thread[{Rest[LinearRecurrence[{2,1},{0,1},nn+1]], DivisorSigma[ 2,Range[nn]]}]] (* _Harvey P. Dale_, Oct 21 2015 *)
%o (PARI) /* Subroutines used in PARI programs below: */
%o {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
%o {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
%o (PARI) {a(n)=sigma(n,2)*Pell(n)}
%o (PARI) {a(n)=polcoeff(sum(m=1,n,m^2*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}
%Y Cf. A203849, A204270, A204271, A204273, A204274, A204275, A001157 (sigma_2), A002203, A000045.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Jan 14 2012