[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204272
a(n) = sigma_2(n)*Pell(n), where sigma_2(n) = A001157(n), the sum of squares of divisors of n.
5
1, 10, 50, 252, 754, 3500, 8450, 34680, 89635, 309140, 700402, 2910600, 5688370, 20195500, 50706500, 160553712, 329639810, 1248615550, 2398289458, 8732957688, 19306982500, 56865638380, 119281100930, 461838762000, 853941516771
OFFSET
1,2
COMMENTS
Compare g.f. to the Lambert series identity: Sum_{n>=1} n^2*x^n/(1-x^n) = Sum_{n>=1} sigma_2(n)*x^n.
LINKS
FORMULA
G.f.: Sum_{n>=1} n^2*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} sigma_2(n)*Pell(n)*x^n, where Pell(n) = A000129(n) and A002203 is the companion Pell numbers.
EXAMPLE
G.f.: A(x) = x + 10*x^2 + 50*x^3 + 252*x^4 + 754*x^5 + 3500*x^6 +...
where A(x) = x/(1-2*x-x^2) + 2^2*2*x^2/(1-6*x^2+x^4) + 3^2*5*x^3/(1-14*x^3-x^6) + 4^2*12*x^4/(1-34*x^4+x^8) + 5^2*29*x^5/(1-82*x^5-x^10) + 6^2*70*x^6/(1-198*x^6+x^12) +...+ n^2*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +...
MATHEMATICA
With[{nn=30}, Times@@@Thread[{Rest[LinearRecurrence[{2, 1}, {0, 1}, nn+1]], DivisorSigma[ 2, Range[nn]]}]] (* Harvey P. Dale, Oct 21 2015 *)
PROG
(PARI) /* Subroutines used in PARI programs below: */
{Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
{A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
(PARI) {a(n)=sigma(n, 2)*Pell(n)}
(PARI) {a(n)=polcoeff(sum(m=1, n, m^2*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 14 2012
STATUS
approved