OFFSET
1,2
COMMENTS
Compare g.f. to the Lambert series identity: Sum_{n>=1} n^2*x^n/(1-x^n) = Sum_{n>=1} sigma_2(n)*x^n.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
FORMULA
EXAMPLE
G.f.: A(x) = x + 10*x^2 + 50*x^3 + 252*x^4 + 754*x^5 + 3500*x^6 +...
where A(x) = x/(1-2*x-x^2) + 2^2*2*x^2/(1-6*x^2+x^4) + 3^2*5*x^3/(1-14*x^3-x^6) + 4^2*12*x^4/(1-34*x^4+x^8) + 5^2*29*x^5/(1-82*x^5-x^10) + 6^2*70*x^6/(1-198*x^6+x^12) +...+ n^2*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +...
MATHEMATICA
With[{nn=30}, Times@@@Thread[{Rest[LinearRecurrence[{2, 1}, {0, 1}, nn+1]], DivisorSigma[ 2, Range[nn]]}]] (* Harvey P. Dale, Oct 21 2015 *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 14 2012
STATUS
approved