[go: up one dir, main page]

login
A193655
Q-residue of the triangle p(n,k)=floor(1/2+(n+1)/(n+k+2)/2), 0<=k<=n, where Q is the triangular array (t(i,j)) given by t(i,j)=1. (See Comments.)
2
1, 7, 29, 94, 280, 765, 2023, 5116, 12710, 30715, 73381, 172026, 400036, 917497, 2091683, 4718584, 10594978, 23592951, 52341409, 115343350, 253405856
OFFSET
0,2
COMMENTS
For the definition of Q-residue, see A193649.
FORMULA
Conjecture: G.f.: ( -1-2*x+3*x^2+9*x^3-8*x^4-4*x^5 ) / ( (1+x)*(2*x+1)*(x-1)^2*(2*x-1)^3 ). - R. J. Mathar, Feb 19 2015
MATHEMATICA
q[n_, k_] := 1;
r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}]
p[n_, k_] := Floor[1/2 + (n + 1) (n + k + 2)/2]
v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
Table[v[n], {n, 0, 20}] (* A193655 *)
TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
Table[r[k], {k, 0, 8}]
TableForm[Table[p[n, k], {n, 0, 4}, {k, 0, n}]]
CROSSREFS
Sequence in context: A294843 A042609 A002941 * A369805 A227086 A102485
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 02 2011
STATUS
approved