[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193421
E.g.f.: Sum_{n>=0} x^n * exp(n^2*x).
15
1, 1, 4, 33, 436, 8185, 206046, 6622945, 263313688, 12627149265, 716160702970, 47284266221401, 3587061106583604, 309251317536586633, 30017652739792964806, 3254137305364883664945, 391238883136463492841136, 51846176797206158144925985
OFFSET
0,3
LINKS
FORMULA
E.g.f.: A(x) = Sum_{n>=0} x^n*exp(n*x)*Product_{k=1..n} (1 - x*exp((4*k-3)*x)) / (1 - x*exp((4*k-1)*x)), due to a q-series identity.
Let q = exp(x), then the e.g.f. equals the continued fraction:
A(x) = 1/(1- q*x/(1- q*(q^2-1)*x/(1- q^5*x/(1- q^3*(q^4-1)*x/(1- q^9*x/(1- q^5*(q^6-1)*x/(1- q^13*x/(1- q^7*(q^8-1)*x/(1- ...))))))))), due to a partial elliptic theta function identity.
a(n) = n! * Sum_{k=0..n} (n-k)^(2*k)/k!. - Paul D. Hanna, Jan 19 2013
O.g.f.: Sum_{k>=0} k! * x^k / (1 - k^2*x)^(k+1). - Ilya Gutkovskiy, Jul 02 2019
log(a(n)) ~ n*(2*(log(n) - 1) + LambertW(sqrt(n))*(3*log(n) - 2*log(1 + LambertW(sqrt(n))) + 2*LambertW(sqrt(n)))) / (2*(1 + LambertW(sqrt(n)))). - Vaclav Kotesovec, Nov 26 2022
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 33*x^3/3! + 436*x^4/4! + 8185*x^5/5! + 206046*x^6/6! +...
where
A(x) = 1 + x*exp(x) + x^2*exp(4*x) + x^3*exp(9*x) + x^4*exp(16*x) +...
By a q-series identity:
A(x) = 1 + x*exp(x)*(1-x*exp(x))/(1-x*exp(3*x)) + x^2*exp(2*x)*(1-x*exp(x))*(1-x*exp(5*x))/((1-x*exp(3*x))*(1-x*exp(7*x))) + x^3*exp(3*x)*(1-x*exp(x))*(1-x*exp(5*x))*(1-x*exp(9*x))/((1-x*exp(3*x))*(1-x*exp(7*x))*(1-x*exp(11*x))) +...
MATHEMATICA
Flatten[{1, Table[n! * Sum[(n-k)^(2*k)/k!, {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Oct 21 2014 *)
PROG
(PARI) {a(n)=local(Egf); Egf=sum(m=0, n, x^m*exp(m^2*x+x*O(x^n))); n!*polcoeff(Egf, n)}
(PARI) /* q-series identity: */
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*exp(m*x+x*O(x^n))*prod(k=1, m, (1-x*exp((4*k-3)*x+x*O(x^n)))/(1-x*exp((4*k-1)*x+x*O(x^n)))))); n!*polcoeff(A, n)}
(PARI) {a(n) = n!*sum(k=0, n, (n-k)^(2*k)/k!)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A119821 A102321 A268293 * A179421 A356834 A296835
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 27 2011
STATUS
approved