[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193348
Number of odd divisors of tau(n).
2
1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 3
OFFSET
1,4
LINKS
FORMULA
a(n) = A001227(A000005(n)). - Reinhard Zumkeller, Jul 25 2011
From Amiram Eldar, Aug 12 2024: (Start)
a(n) = 1 if and only if n is in A036537.
a(n) = A010553(n) if and only if n is a square. (End)
EXAMPLE
a(36) = 3 because tau(36) = 9 and the 3 odd divisors are {1, 3, 9}.
MATHEMATICA
a[n_] := Block[{d = Divisors[DivisorSigma[0, n]]}, Count[OddQ[d], True]]; Table[a[n], {n, 80}]
PROG
(PARI) a(n)=sumdiv(sigma(n, 0), d, d%2);
(PARI) a(n)=n=numdiv(n); numdiv(n>>valuation(n, 2)) \\ Charles R Greathouse IV, Jul 30 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michel Lagneau, Jul 23 2011
STATUS
approved