[go: up one dir, main page]

login
A193285
Number of forbidden patterns of length n of the map f(x) = 4x(1-x) on the unit interval. A permutation pi is a forbidden pattern if there is no x in [0,1] such that the values x,f(x),f(f(x)),...,f^{n-1}(x) are in the same relative order as pi_1,pi_2,...,pi_n.
3
0, 0, 0, 1, 12, 89, 645, 4862, 39906, 361931, 3626663, 39912033
OFFSET
0,5
COMMENTS
a(n) is also the number of forbidden patterns of length n of the tent map x -> 1-|1-2x| in [0,1].
LINKS
S. Elizalde and Y. Liu, On basic forbidden patterns of functions, Discrete Appl. Math. 159 (2011), 1207-1216.
FORMULA
a(n) = n! - A193284(n).
EXAMPLE
a(3) = 1 because the only forbidden pattern of length 3 is 321.
CROSSREFS
Cf. A000142, A193284 (allowed patterns).
Sequence in context: A083825 A181944 A359311 * A199558 A034197 A217089
KEYWORD
nonn,more
AUTHOR
Sergi Elizalde, Jul 20 2011
EXTENSIONS
a(0)=0 prepended by Alois P. Heinz, Mar 02 2020
STATUS
approved