[go: up one dir, main page]

login
A193193
G.f. satisfies: A(A(x)) = Sum_{n>=1} a(n)*x^n / (1-x)^(n^2), where g.f. A(x) = Sum_{n>=1} a(n)*x^n.
4
1, 1, 3, 22, 334, 8831, 359836, 20845201, 1625007715, 163854289212, 20739421240200, 3218400384155498, 600776969761195428, 132793055529329858607, 34298178516935957467888, 10235014757932193318825335
OFFSET
1,3
EXAMPLE
G.f.: A(x) = x + x^2 + 3*x^3 + 22*x^4 + 334*x^5 + 8831*x^6 +...
where
A(A(x)) = x/(1-x) + x^2/(1-x)^4 + 3*x^3/(1-x)^9 + 22*x^4/(1-x)^16 + 334*x^5/(1-x)^25 + 8831*x^6/(1-x)^36 +...+ a(n)*x^n/(1-x)^(n^2) +...
Explicitly,
A(A(x)) = x + 2*x^2 + 8*x^3 + 60*x^4 + 842*x^5 + 20704*x^6 + 805796*x^7 +...
PROG
(PARI) {a(n)=local(A=[1], F=x, G=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A);
G=sum(m=1, #A-1, A[m]*x^m/(1-x+x*O(x^#A))^(m^2));
A[#A]=Vec(G)[#A]-Vec(subst(F, x, F))[#A]); if(n<1, 0, A[n])}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 19 2011
STATUS
approved