[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192964
Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined at Comments.
3
1, 0, 3, 7, 16, 31, 57, 100, 171, 287, 476, 783, 1281, 2088, 3395, 5511, 8936, 14479, 23449, 37964, 61451, 99455, 160948, 260447, 421441, 681936, 1103427, 1785415, 2888896, 4674367, 7563321, 12237748, 19801131, 32038943, 51840140, 83879151
OFFSET
0,3
COMMENTS
The titular polynomials are defined recursively: p(n,x) = x*p(n-1,x) - n + n^2, with p(0,x)=1. For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232 and A192744.
FORMULA
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
G.f.: (1 -3*x +5*x^2 -x^3)/((1-x-x^2)*(1-x)^2). - R. J. Mathar, May 11 2014
a(n) = Fibonacci(n+3) + 3*Fibonacci(n+1) - 2*(n+2). - G. C. Greubel, Jul 11 2019
MATHEMATICA
(* First program *)
q = x^2; s = x + 1; z = 40;
p[0, x]:= 1;
p[n_, x_]:= x*p[n-1, x] + n(n-1);
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192964 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192965 *)
(* Second program *)
With[{F=Fibonacci}, Table[F[n+3]+3*F[n+1] -2*(n+2), {n, 0, 40}]] (* G. C. Greubel, Jul 11 2019 *)
PROG
(PARI) vector(40, n, n--; f=fibonacci; f(n+3)+3*f(n+1)-2*(n+2)) \\ G. C. Greubel, Jul 11 2019
(Magma) F:=Fibonacci; [F(n+3) +3*F(n+1) -2*(n+2): n in [0..40]]; // G. C. Greubel, Jul 11 2019
(Sage) f=fibonacci; [f(n+3) +3*f(n+1) -2*(n+2) for n in (0..40)] # G. C. Greubel, Jul 11 2019
(GAP) F:=Fibonacci;; List([0..40], n-> F(n+3) +3*F(n+1) -2*(n+2)); # G. C. Greubel, Jul 11 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 13 2011
STATUS
approved