[go: up one dir, main page]

login
A192869
Thin primes: odd primes p such that p+1 is a prime (or 1) times a power of two.
7
3, 5, 7, 11, 13, 19, 23, 31, 37, 43, 47, 61, 67, 73, 79, 103, 127, 151, 157, 163, 191, 193, 211, 223, 271, 277, 283, 313, 331, 367, 383, 397, 421, 457, 463, 487, 523, 541, 547, 607, 613, 631, 661, 673, 691, 733, 751, 757, 787, 823, 877, 907, 991, 997, 1051
OFFSET
1,1
COMMENTS
Broughan & Qizhi conjecture that a(n) << n (log n)^2, matching the lower bound they proved.
Sequence A206581 excludes the Mersenne primes (A000043), which are included here under the "or 1" case. - T. D. Noe, Mar 07 2012
REFERENCES
D. R. Heath-Brown, "Artin's conjecture for primitive roots", Quarterly Journal of Mathematics 37:1 (1986) pp. 27-38.
N. M. Timofeev, "The Hardy-Ramanujan and Halasz inequalities for shifted primes", Mathematical Notes 57:5 (1995), pp. 522-535.
LINKS
Kevin Broughan and Zhou Qizhi, Flat primes and thin primes, Bulletin of the Australian Mathematical Society 82:2 (2010), pp. 282-292.
Qizhi Zhou, Multiply perfect numbers of low abundancy, PhD thesis (2010)
FORMULA
a(n) >> n (log n)^2.
MATHEMATICA
onePrimeQ[n_] := n == 1 || PrimeQ[n]; Select[Prime[Range[2, 1000]], onePrimeQ[(# + 1)/2^IntegerExponent[# + 1, 2]] &] (* T. D. Noe, Mar 06 2012 *)
PROG
(PARI) is(n)=n%2&&isprime(n)&&(isprime((n+1)>>valuation(n+1, 2)) || n+1==1<<valuation(n+1, 2))
CROSSREFS
Subsequence of A192868.
Sequence in context: A216371 A095747 A132779 * A147513 A075323 A020575
KEYWORD
nonn
AUTHOR
STATUS
approved