[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192032
Square array read by antidiagonals: W(m,n) (m >= 0, n >= 0) is the Wiener index of the graph G(m,n) obtained in the following way: connect by an edge the center of an m-edge star with the center of an n-edge star. The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph.
0
1, 4, 4, 9, 10, 9, 16, 18, 18, 16, 25, 28, 29, 28, 25, 36, 40, 42, 42, 40, 36, 49, 54, 57, 58, 57, 54, 49, 64, 70, 74, 76, 76, 74, 70, 64, 81, 88, 93, 96, 97, 96, 93, 88, 81, 100, 108, 114, 118, 120, 120, 118, 114, 108, 100, 121, 130, 137, 142, 145, 146, 145, 142, 137, 130, 121
OFFSET
0,2
COMMENTS
W(n,0) = W(0,n) = A000290(n+1) = (n+1)^2.
W(n,1) = W(1,n) = A028552(n+1) = (n+1)*(n+4).
W(n,2) = W(2,n) = A028881(n+4) = n^2 + 8*n + 9.
W(n,n) = A079273(n+1) = 5*n^2 + 4*n + 1.
W(n,m) = W(m,n) (trivially).
LINKS
B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
FORMULA
W(m,n) = m^2 + n^2 + 3*m*n + 2*m + 2*n + 1.
The Wiener polynomial of the graph G(n,m) is P(m,n;t) = (m+n+1)*t + (1/2)*(m^2 + n^2 + m + n)*t^2 + m*n*t^3.
EXAMPLE
W(1,2)=18 because in the graph with vertex set {A,a,B,b,b'} and edge set {AB, Aa, Bb, Bb'} we have 4 pairs of vertices at distance 1 (the edges), 4 pairs at distance 2 (Ab, Ab', Ba, bb') and 2 pairs at distance 3 (ab,ab'); 4*1 + 4*2 + 2*3 = 18.
The square array starts:
1, 4, 9, 16, 25, ...;
4, 10, 18, 28, 30, ...;
9, 18, 29, 42, 57, ...;
16, 28, 42, 58, 76, ...;
MAPLE
W := proc (m, n) options operator, arrow: m^2+n^2+3*m*n+2*m+2*n+1 end proc: for n from 0 to 10 do seq(W(n-i, i), i = 0 .. n) end do; # yields the antidiagonals in triangular form
W := proc (m, n) options operator, arrow: m^2+n^2+3*m*n+2*m+2*n+1 end proc: for m from 0 to 9 do seq(W(m, n), n = 0 .. 9) end do; # yields the first 10 entries of each of rows 0, 1, 2, ..., 9
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jun 30 2011
STATUS
approved