[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191647
Numbers n with property that the concatenation of their anti-divisors is a prime.
3
3, 4, 5, 10, 14, 16, 40, 46, 100, 145, 149, 251, 340, 373, 406, 424, 439, 466, 539, 556, 571, 575, 617, 619, 628, 629, 655, 676, 689, 724, 760, 779, 794, 899, 901, 941, 970, 989, 1019, 1055, 1070, 1076, 1183, 1213, 1226, 1231, 1258, 1270, 1285, 1331, 1340
OFFSET
1,1
COMMENTS
Similar to A120712 which uses the proper divisors of n.
LINKS
Klaus Brockhaus Table of n, a(n) for n = 1..1000 (first 250 terms from Paolo P. Lava)
EXAMPLE
The anti-divisors of 40 are 3, 9, 16, 27, and 391627 is prime, hence 40 is in the sequence.
MAPLE
P:=proc(i) local a, b, c, d, k, n, s, v; v:=array(1..200000);
for n from 3 by 1 to i do k:=2; b:=0;
while k<n do if (k mod 2)=0 then
if (n mod k)>0 and (2*n mod k)=0 then b:=b+1; v[b]:=k; fi;
else
if (n mod k)>0 and (((2*n-1) mod k)=0 or ((2*n+1) mod k)=0) then
b:=b+1; v[b]:=k; fi; fi; k:=k+1; od; a:=v[1];
for s from 2 to b do a:=a*10^floor(1+evalf(log10(v[s])))+v[s]; od;
if isprime(a) then print(n); fi;
od; end: P(10^6);
MATHEMATICA
antiDivisors[n_Integer] := Cases[Range[2, n - 1], _?(Abs[Mod[n, #] - #/2] < 1 &)]; a191647[n_Integer] := Select[Range[n],
PrimeQ[FromDigits[Flatten[IntegerDigits /@ antiDivisors[#]]]] &]; a191647[1350] (* Michael De Vlieger, Aug 09 2014, "antiDivisors" after Harvey P. Dale at A066272 *)
PROG
(Python)
from sympy import isprime
[n for n in range(3, 10**4) if isprime(int(''.join([str(d) for d in range(2, n) if n%d and 2*n%d in [d-1, 0, 1]])))] # Chai Wah Wu, Aug 08 2014
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Jun 10 2011
EXTENSIONS
a(618) corrected in b-file by Paolo P. Lava, Feb 28 2018
STATUS
approved