[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190113
T(n,k) = number of 2:3:sqrt(13) proportioned triangles on a (n+1) X (k+1) grid.
3
0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 8, 16, 8, 0, 0, 12, 28, 28, 12, 0, 0, 16, 44, 48, 44, 16, 0, 0, 20, 60, 76, 76, 60, 20, 0, 0, 24, 76, 108, 120, 108, 76, 24, 0, 0, 28, 92, 140, 172, 172, 140, 92, 28, 0, 0, 32, 108, 176, 224, 248, 224, 176, 108, 32, 0, 0, 36, 124, 212, 284, 328, 328, 284
OFFSET
1,8
LINKS
FORMULA
Empirical for columns:
k=2: a(n) = 4*n - 8 for n>1
k=3: a(n) = 16*n - 36 for n>3
k=4: a(n) = 36*n - 112 for n>6
k=5: a(n) = 60*n - 196 for n>6
k=6: a(n) = 108*n - 472 for n>11
k=7: a(n) = 160*n - 768 for n>11
k=8: a(n) = 228*n - 1232 for n>14
k=9: a(n) = 320*n - 1948 for n>16
k=10: a(n) = 432*n - 2956 for n>19
k=11: a(n) = 552*n - 4028 for n>19
k=12: a(n) = 720*n - 5900 for n>24
k=13: a(n) = 896*n - 7848 for n>24
k=14: a(n) = 1100*n - 10348 for n>27
EXAMPLE
Table starts
.0..0...0...0...0...0...0....0....0....0....0....0....0....0....0....0....0
.0..0...4...8..12..16..20...24...28...32...36...40...44...48...52...56...60
.0..4..16..28..44..60..76...92..108..124..140..156..172..188..204..220..236
.0..8..28..48..76.108.140..176..212..248..284..320..356..392..428..464..500
.0.12..44..76.120.172.224..284..344..404..464..524..584..644..704..764..824
.0.16..60.108.172.248.328..420..516..616..720..824..932.1040.1148.1256.1364
.0.20..76.140.224.328.440..568..704..848.1000.1152.1312.1472.1632.1792.1952
.0.24..92.176.284.420.568..736..916.1108.1312.1520.1740.1964.2188.2416.2644
.0.28.108.212.344.516.704..916.1152.1404.1672.1952.2248.2552.2860.3176.3492
.0.32.124.248.404.616.848.1108.1404.1720.2056.2412.2788.3176.3576.3988.4404
Some solutions for n=7 k=5
..3..5....1..2....4..3....1..4....0..3....4..4....4..0....3..3....4..4....3..0
..3..3....1..4....1..0....1..0....2..5....4..1....2..0....0..3....1..4....3..2
..6..5....4..2....2..5....7..4....3..0....6..4....4..3....3..5....4..2....6..0
PROG
(PARI) T(n, k)=2*sum(i=0, n\3, sum(j=0, k\3, ((i!=0) + (j!=0))* (max(0, n+1 - max(3*i, 2*j)) * max(0, k+1 - (3*j+2*i)) + max(0, n+1 - (3*i+2*j)) * max(0, k+1 - max(3*j, 2*i)) ))) \\ Andrew Howroyd, Mar 11 2024
CROSSREFS
Diagonal is A190112.
Cf. A189885.
Sequence in context: A291649 A216060 A230278 * A165727 A284609 A363174
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, May 04 2011
STATUS
approved