[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190109
Numbers with prime factorization p*q^2*r^2*s^3 (where p, q, r, s are distinct primes).
5
12600, 17640, 18900, 19800, 23400, 26460, 29400, 29700, 30600, 31500, 34200, 35100, 38808, 41400, 43560, 45864, 45900, 49500, 51300, 52200, 55800, 58212, 58500, 59976, 60840, 60984, 61740, 62100, 65340, 66150, 66600, 67032, 68796, 72600, 73500, 73800, 76500
OFFSET
1,1
COMMENTS
That is, numbers with prime signature {1,2,2,3}.
LINKS
Eric Weisstein's World of Mathematics, Prime signature.
Wikipedia, Prime signature.
Will Nicholes, Prime Signatures.
EXAMPLE
From Petros Hadjicostas, Oct 26 2019: (Start)
a(1) = (2^3)*(3^2)*(5^2)*7 = 12600;
a(2) = (2^3)*(3^2)*5*(7^2) = 17640;
a(3) = (2^2)*(3^3)*(5^2)*7 = 18900;
a(4) = (2^3)*(3^2)*(5^2)*11 = 19800.
(End)
MATHEMATICA
f[n_]:=Sort[Last/@FactorInteger[n]]=={1, 2, 2, 3}; Select[Range[150000], f]
PROG
(PARI) list(lim)=my(v=List(), t1, t2, t3); forprime(p=2, sqrtnint(lim\180, 3), t1=p^3; forprime(q=2, sqrtint(lim\(12*t1)), if(q==p, next); t2=q^2*t1; forprime(r=2, sqrtint(lim\(2*t2)), if(r==p || r==q, next); t3=r^2*t2; forprime(s=2, lim\t3, if(s==p || s==q || s==r, next); listput(v, t3*s))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved