[go: up one dir, main page]

login
A199983
Primes whose multiplicative digital root is 4.
2
41, 89, 127, 139, 193, 271, 277, 379, 383, 397, 463, 643, 677, 727, 739, 937, 1193, 1217, 1249, 1277, 1319, 1429, 1721, 1913, 1931, 1973, 2377, 2711, 3119, 3191, 3313, 3331, 3373, 3461, 3719, 3727, 3733, 3911, 3917, 4111, 4129, 4219, 6143, 7121, 7127, 7193
OFFSET
1,1
COMMENTS
Complement of A199984 with respect to A034051.
Can this sequence be proved to be infinite? [Charles R Greathouse IV, Nov 13 2011]
EXAMPLE
Prime 139 is in sequence because 1*3*9=27, 2*7=14, 1*4=4.
MATHEMATICA
t = {}; n = 0; While[Length[t] < 100, n = NextPrime[n]; s = n; While[s >= 10, s = Times @@ IntegerDigits[s]]; If[s == 4, AppendTo[t, n]]]; t (* T. D. Noe, Nov 16 2011 *)
CROSSREFS
Cf. A199984 (composite numbers whose multiplicative digital root is 4).
Cf. A034051 (numbers whose multiplicative digital root is 4).
Sequence in context: A087939 A242708 A282533 * A241081 A188173 A142411
KEYWORD
nonn,base
AUTHOR
Jaroslav Krizek, Nov 13 2011
STATUS
approved