[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199823
G.f. A(x) satisfies A(A(x)) = (x+2*x^2)/(1-2*x-4*x^2).
1
0, 1, 2, 2, 6, 2, 20, 4, -10, 334, -864, 236, 8356, 22252, -450052, -347224, 30131822, -54733650, -2300158256, 10315132412, 221235097892, -1741162058468, -25836213977848, 319542298035704, 3570412755518780, -66526876971287412, -567916947391285280
OFFSET
0,3
LINKS
Dmitry Kruchinin, Vladimir Kruchinin, Method for solving an iterative functional equation A^{2^n}(x)=F(x), arXiv:1302.1986 [math.CO], 2013.
FORMULA
a(n) = T(n,1), T(n,k) = 1 if n=k, else T(n,k) = 1/2*((sum(i=k..n, C(i-1,k-1) * C(i,n-i))) * 2^(n-k) - sum(i=k+1..n-1, T(n,i)*T(i,k))).
MAPLE
a:= n-> T(n, 1):
T:= proc(n, k) option remember;
`if`(n=k, 1, (add(binomial(i-1, k-1) *binomial(i, n-i), i=k..n)
*2^(n-k) -add(T(n, i)*T(i, k), i=k+1..n-1))/2)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 11 2011
MATHEMATICA
a[n_] := T[n, 1]; T[n_, k_] := T[n, k] = If[n == k, 1, 1/2*(Sum[Binomial[i-1, k-1] * Binomial[i, n-i], {i, k, n}]*2^(n-k) - Sum[T[n, i]*T[i, k], {i, k+1, n-1}]) ]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 21 2015, from formula *)
CROSSREFS
Sequence in context: A061057 A038667 A304104 * A013608 A369867 A324158
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Nov 11 2011
STATUS
approved