[go: up one dir, main page]

login
A196836
a(n) = (1^n + 2^n +3^n + 4^n)/2.
2
2, 5, 15, 50, 177, 650, 2445, 9350, 36177, 141170, 554325, 2186750, 8656377, 34355690, 136617405, 544061750, 2169039777, 8654570210, 34553579685, 138020346350, 551499730377, 2204254480730, 8811785649165, 35231447872550, 140878711512177, 563373614503250
OFFSET
0,1
COMMENTS
2*a(n) = A001551(n), n>=0.
FORMULA
a(n) = (1^n + 2^n + 3^n + 4^n)/2, n>=0.
E.g.f.: (1-exp(4*x))/(2*(exp(-x)-1)) = Sum_{j=1..4} exp(j*x)/2.
O.g.f.: (2-5*x)*(1-5*x+5*x^2)/(Product_{j=1..4} (1-j*x)) (via Laplace transformation of the o.g.f.).
MATHEMATICA
Table[Total[Range[4]^n]/2, {n, 0, 40}] (* T. D. Noe, Oct 10 2011 *)
CROSSREFS
Cf. A001551/2.
Sequence in context: A149951 A367317 A157135 * A365247 A369212 A279553
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 10 2011
STATUS
approved