[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2^(prime(n)-1) mod prime(n)^2.
12

%I #37 Oct 24 2024 02:20:22

%S 2,4,16,15,56,40,222,58,392,30,187,38,944,1076,2069,1909,473,2197,671,

%T 143,4089,1502,3985,535,5530,9293,6078,1392,7304,9380,2287,2228,7262,

%U 4171,14305,8457,12875,10922,7850,520,8951,26789,9551,20073,34476,26866

%N a(n) = 2^(prime(n)-1) mod prime(n)^2.

%C a(A049084(A001220(1))) = a(A049084(A001220(2))) = 1.

%D N. G. W. H. Beeger, On a new case of the congruence 2^(p-1) ≡ 1 (p^2), Messenger of Mathematics 51, (1922), p. 149-150

%D Paulo Ribenboim, 1093 (Chap 8), in 'My Numbers, My Friends', Springer-Verlag 2000 NY, page 213ff.

%H Reinhard Zumkeller, <a href="/A196202/b196202.txt">Table of n, a(n) for n = 1..10000</a>

%H W. Meissner, <a href="/A001917/a001917.pdf">Über die Teilbarkeit von 2^p-2 durch das Quadrat der Primzahl p = 1093</a>, Sitzungsberichte Königlich Preussischen Akadamie Wissenschaften Berlin, 35 (1913), 663-667. [Annotated scanned copy]

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WieferichPrime.html">Wieferich Prime</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Wieferich_prime">Wieferich prime</a>.

%e A001220(1)=1093=A000040(183): a(183)=1, or a(A049084(A001220(1)))=1;

%e A001220(2)=3511=A000040(490): a(490)=1, or a(A049084(A001220(2)))=1.

%p seq(2 &^ (ithprime(n)-1) mod ithprime(n)^2, n=1..1000); # _Robert Israel_, Aug 03 2014

%t PowerMod[2,#-1,#^2]&/@Prime[Range[50]] (* _Harvey P. Dale_, Apr 25 2012 *)

%o (PARI) forprime(p=2, 1e2, print1(lift(Mod(2, p^2)^(p-1)), ", ")) \\ _Felix Fröhlich_, Aug 03 2014

%o (Haskell)

%o import Math.NumberTheory.Moduli (powerMod)

%o a196202 n = powerMod 2 (p - 1) (p ^ 2) where p = a000040 n

%o -- _Reinhard Zumkeller_, May 18 2015

%Y Cf. A061286.

%K nonn,easy

%O 1,1

%A _Reinhard Zumkeller_, Sep 29 2011