%I #21 Aug 06 2021 04:38:50
%S 8,6,2,150,96,324,6,1518,174,168,21384,18,20754,2988,2424,8196,3786,
%T 14952,34056,48,1620,8256,31344,1176,123360,147456,28650,132,90,12834,
%U 81126,11790,2340,9702,11496,33000,10716,66954,6816,234,109956,3012,6744,117654,19950,26550,8226,40584,23640,30660
%N Smallest number k such that k^n is the sum of numbers in a twin prime pair.
%C Schinzel's hypothesis H implies that a(n) exists for every n. [_Charles R Greathouse IV_, Sep 18 2011]
%F a(n) is the least k such that (1/2)*k^n - 1 and (1/2)*k^n + 1 are prime.
%p isA054735 := proc(n)
%p if type(n,'odd') then
%p false;
%p else
%p isprime(n/2-1) and isprime(n/2+1) ;
%p end if;
%p end proc:
%p A195336 := proc(n)
%p for k from 1 do
%p if isA054735(k^n) then
%p return k;
%p end if;
%p end do:
%p end proc:
%p for n from 1 do print(A195336(n)) ; end do: # _R. J. Mathar_, Sep 20 2011
%o (PARI) a(n)=my(k=2);while(!ispseudoprime(k^n/2-1)||!ispseudoprime(k^n/2+1),k+=2);k \\ _Charles R Greathouse IV_, Sep 18 2011
%o (Python)
%o from sympy import isprime
%o def cond(k, n): m = (k**n)//2; return isprime(m-1) and isprime(m+1)
%o def a(n):
%o k = 2
%o while not cond(k, n): k += 2
%o return k
%o print([a(n) for n in range(1, 25)]) # _Michael S. Branicky_, Aug 06 2021
%Y Cf. A054735.
%K nonn
%O 1,1
%A _Kausthub Gudipati_, Sep 16 2011
%E a(11)-a(50) from _Charles R Greathouse IV_, Sep 18 2011