[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194972
a(n) equals the coefficient of x^n in the (2*n-1)-th iteration of x+x^2 for n>=1.
1
1, 3, 20, 231, 3864, 85140, 2332616, 76485227, 2921536088, 127421864328, 6248486040840, 340321635330534, 20383240346962440, 1331538898625750100, 94216429100347571448, 7178425650032302557691, 585936966156456139931584, 51011156414845408925712816
OFFSET
1,2
EXAMPLE
The coefficients of x^k, k>=1, in the odd iterations of x+x^2 begin:
n=1: [(1), 1];
n=3: [1,(3), 6, 9, 10, 8, 4, 1];
n=5: [1, 5,(20), 70, 220, 630, 1656, 4014, 8994, 18654, ...];
n=7: [1, 7, 42,(231), 1190, 5810, 27076, 121023, 520626, ...];
n=9: [1, 9, 72, 540,(3864), 26628, 177744, 1153740, 7303164, ...];
n=11:[1, 11, 110, 1045, 9570,(85140), 739332, 6286797, ...];
n=13:[1, 13, 156, 1794, 20020, 218218,(2332616), 24519066, ...];
n=15:[1, 15, 210, 2835, 37310, 481390, 6110468,(76485227), ...]; ...
coefficients in parenthesis form the initial terms of this sequence.
PROG
(PARI) {a(n)=local(A=x, G=x+x^2); for(i=1, 2*n-1, A=subst(G, x, A+x*O(x^n))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 06 2011
STATUS
approved