[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194485
T(n,k) = number of ways to arrange k indistinguishable points on an n X n X n triangular grid so that no four points are in the same row or diagonal.
5
1, 0, 3, 0, 3, 6, 0, 1, 15, 10, 0, 0, 20, 45, 15, 0, 0, 15, 120, 105, 21, 0, 0, 6, 207, 455, 210, 28, 0, 0, 1, 234, 1347, 1330, 378, 36, 0, 0, 0, 165, 2817, 5922, 3276, 630, 45, 0, 0, 0, 63, 4135, 19362, 20307, 7140, 990, 55, 0, 0, 0, 9, 4080, 47010, 94584, 58527, 14190, 1485
OFFSET
1,3
COMMENTS
Table starts
...1....0......0.......0.........0..........0...........0............0
...3....3......1.......0.........0..........0...........0............0
...6...15.....20......15.........6..........1...........0............0
..10...45....120.....207.......234........165..........63............9
..15..105....455....1347......2817.......4135........4080.........2463
..21..210...1330....5922.....19362......47010.......83745.......105663
..28..378...3276...20307.....94584.....337860......927471......1931571
..36..630...7140...58527....365904....1790472.....6924357.....21123489
..45..990..14190..148239...1193283....7622340....39196161....162957252
..55.1485..26235..339669...3413619...27489825...180512640....974497260
..66.2145..45760..718344...8800704...87018360...708150465...4794685500
..78.3003..76076.1422564..20845968..247874770..2442836682..20207649891
..91.4095.121485.2666664..46017972..647091588..7582054194..75074999142
.105.5460.187460.4771221..95710797.1569661600.21540941994.251128663929
.120.7140.280840.8201466.189154056.3576049620.56763356130.768641935191
LINKS
FORMULA
Empirical:
T(n,1) = (1/2)*n^2 + (1/2)*n
T(n,2) = (1/8)*n^4 + (1/4)*n^3 - (1/8)*n^2 - (1/4)*n
T(n,3) = (1/48)*n^6 + (1/16)*n^5 - (1/16)*n^4 - (11/48)*n^3 + (1/24)*n^2 + (1/6)*n
T(n,4) = (1/384)*n^8 + (1/96)*n^7 - (1/64)*n^6 - (13/120)*n^5 + (19/128)*n^4 + (7/96)*n^3 - (13/96)*n^2 + (1/40)*n
T(n,5) = (1/3840)*n^10 + (1/768)*n^9 - (1/384)*n^8 - (59/1920)*n^7 + (281/3840)*n^6 + (149/3840)*n^5 - (5/24)*n^4 + (29/320)*n^3 + (11/80)*n^2 - (1/10)*n
T(n,6) = (1/46080)*n^12 + (1/7680)*n^11 - (1/3072)*n^10 - (137/23040)*n^9 + (871/46080)*n^8 + (3107/161280)*n^7 - (5573/46080)*n^6 + (1157/23040)*n^5 + (2627/11520)*n^4 - (1121/5760)*n^3 - (181/1440)*n^2 + (11/84)*n
T(n,7) = (1/645120)*n^14 + (1/92160)*n^13 - (1/30720)*n^12 - (79/92160)*n^11 + (101/30720)*n^10 + (757/129024)*n^9 - (3049/92160)*n^8 - (34099/645120)*n^7 + (6613/15360)*n^6 - (16859/23040)*n^5 + (1043/3840)*n^4 + (2759/5040)*n^3 - (753/1120)*n^2 + (13/56)*n
Empirical: general T(n,k,z) for fewer than z points in any row or diagonal is polynomial in n of degree 2k with lead coefficient 1/(2^k*k!) for small k.
T(n,1,2) = (1/2)*n^2 + (1/2)*n
T(n,1,3) = (1/2)*n^2 + (1/2)*n
T(n,1,4) = (1/2)*n^2 + (1/2)*n
T(n,2,2) = (1/8)*n^4 - (1/4)*n^3 - (1/8)*n^2 + (1/4)*n
T(n,2,3) = (1/8)*n^4 + (1/4)*n^3 - (1/8)*n^2 - (1/4)*n
T(n,2,4) = (1/8)*n^4 + (1/4)*n^3 - (1/8)*n^2 - (1/4)*n
T(n,3,3) = (1/48)*n^6 + (1/16)*n^5 - (3/16)*n^4 + (1/48)*n^3 + (1/6)*n^2 - (1/12)*n
T(n,3,4) = (1/48)*n^6 + (1/16)*n^5 - (1/16)*n^4 - (11/48)*n^3 + (1/24)*n^2 + (1/6)*n
T(n,4,3) = (1/384)*n^8 + (1/96)*n^7 - (5/64)*n^6 + (13/240)*n^5 + (27/128)*n^4 - (23/96)*n^3 - (13/96)*n^2 + (7/40)*n
T(n,4,4) = (1/384)*n^8 + (1/96)*n^7 - (1/64)*n^6 - (13/120)*n^5 + (19/128)*n^4 + (7/96)*n^3 - (13/96)*n^2 + (1/40)*n
T(n,5,3) = (1/3840)*n^10 + (1/768)*n^9 - (7/384)*n^8 + (37/1920)*n^7 + (737/3840)*n^6 - (2347/3840)*n^5 + (101/192)*n^4 + (93/320)*n^3 - (7/10)*n^2 + (3/10)*n
T(n,5,4) = (1/3840)*n^10 + (1/768)*n^9 - (1/384)*n^8 - (59/1920)*n^7 + (281/3840)*n^6 + (149/3840)*n^5 - (5/24)*n^4 + (29/320)*n^3 + (11/80)*n^2 - (1/10)*n
T(n,6,4) = (1/46080)*n^12 + (1/7680)*n^11 - (1/3072)*n^10 - (137/23040)*n^9 + (871/46080)*n^8 + (3107/161280)*n^7 - (5573/46080)*n^6 + (1157/23040)*n^5 + (2627/11520)*n^4 - (1121/5760)*n^3 - (181/1440)*n^2 + (11/84)*n
T(n,7,4) = (1/645120)*n^14 + (1/92160)*n^13 - (1/30720)*n^12 - (79/92160)*n^11 + (101/30720)*n^10 + (757/129024)*n^9 - (3049/92160)*n^8 - (34099/645120)*n^7 + (6613/15360)*n^6 - (16859/23040)*n^5 + (1043/3840)*n^4 + (2759/5040)*n^3 - (753/1120)*n^2 + (13/56)*n
EXAMPLE
Some solutions for n=5, k=4:
......0..........0..........0..........1..........0..........0..........0
.....0.0........0.1........0.1........1.0........0.0........0.1........0.0
....0.0.0......0.0.1......1.0.0......0.0.0......0.0.0......0.0.0......1.1.0
...0.0.1.1....0.0.0.0....0.0.1.0....0.0.1.0....0.0.1.1....0.0.0.0....0.0.0.0
..0.1.0.0.1..0.1.1.0.0..0.1.0.0.0..0.1.0.0.0..0.0.1.1.0..0.1.1.0.1..1.0.1.0.0
CROSSREFS
Column 1 is A000217.
Column 2 is A050534(n+1).
Column 3 is A093566(n+2).
Sequence in context: A194492 A194136 A194480 * A120987 A281293 A258108
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 26 2011
STATUS
approved