OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..400
V. Dotsenko, Pattern avoidance in labelled trees, arXiv preprint arXiv:1110.0844 [math.CO], 2011-2012.
FORMULA
E.g.f.: A(x) = 1 + A(x)*[Integral 1 + x*A(x) dx], where the integration does not include the constant term.
E.g.f.: d/dx Series_Reversion(Sum_{n>=1} x^(3*n-2)/(3*n-2)! - x^(3*n-1)/(3*n-1)!).
a(n) ~ n^n * exp(Pi*(n+1)/(3*sqrt(3))-n). - Vaclav Kotesovec, Feb 19 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 14*x^3/3! + 91*x^4/4! +...
A'(x) = 1 + 3*x + 14*x^2/2! + 91*x^3/3! + 756*x^4/4! +...
A(x)^2 = 1 + 2*x + 8*x^2/2! + 46*x^3/3! + 348*x^4/4! + 3262*x^5/5! +...
A(x)^3 = 1 + 3*x + 15*x^2/2! + 102*x^3/3! + 879*x^4/4! + 4395*x^5/5! +...
E.g.f. A(x) = d/dx Series_Reversion(G(x)) where G(x) begins:
G(x) = x - x^2/2! + x^4/4! - x^5/5! + x^7/7! - x^8/8! + x^10/10! - x^11/11! +...
The series reversion of G(x) begins:
x + x^2/2! + 3*x^3/3! + 14*x^4/4! + 91*x^5/5! + 756*x^6/6! +...
MATHEMATICA
terms = 20; A[_] = 0;
Do[A[x_] = 1+Integrate[A[x]^2 + x A[x]^3, x]+O[x]^terms // Normal, terms];
CoefficientList[A[x], x] Range[0, terms-1]! (* Jean-François Alcover, Oct 27 2018 *)
PROG
(PARI) {a(n)=local(A=1); for(n=0, n, A=1+A*intformal(1+x*A+x*O(x^n))); n!*polcoeff(A, n)}
(PARI) {a(n)=n!*polcoeff(deriv(serreverse(sum(m=1, n\3+1, x^(3*m-2)/(3*m-2)!-x^(3*m-1)/(3*m-1)!+x^2*O(x^n)))), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 21 2011
STATUS
approved