[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183611
E.g.f. satisfies: A'(x) = A(x)^2 + x*A(x)^3, with A(0) = 1.
2
1, 1, 3, 14, 91, 756, 7657, 91504, 1260441, 19663280, 342669691, 6597811584, 139094618467, 3186675803584, 78834061767825, 2094418664339456, 59474007876381553, 1797637447068293376, 57623116235327599411
OFFSET
0,3
LINKS
V. Dotsenko, Pattern avoidance in labelled trees, arXiv preprint arXiv:1110.0844 [math.CO], 2011-2012.
FORMULA
E.g.f.: A(x) = 1 + A(x)*[Integral 1 + x*A(x) dx], where the integration does not include the constant term.
E.g.f.: d/dx Series_Reversion(Sum_{n>=1} x^(3*n-2)/(3*n-2)! - x^(3*n-1)/(3*n-1)!).
a(n) ~ n^n * exp(Pi*(n+1)/(3*sqrt(3))-n). - Vaclav Kotesovec, Feb 19 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 14*x^3/3! + 91*x^4/4! +...
A'(x) = 1 + 3*x + 14*x^2/2! + 91*x^3/3! + 756*x^4/4! +...
A(x)^2 = 1 + 2*x + 8*x^2/2! + 46*x^3/3! + 348*x^4/4! + 3262*x^5/5! +...
A(x)^3 = 1 + 3*x + 15*x^2/2! + 102*x^3/3! + 879*x^4/4! + 4395*x^5/5! +...
E.g.f. A(x) = d/dx Series_Reversion(G(x)) where G(x) begins:
G(x) = x - x^2/2! + x^4/4! - x^5/5! + x^7/7! - x^8/8! + x^10/10! - x^11/11! +...
The series reversion of G(x) begins:
x + x^2/2! + 3*x^3/3! + 14*x^4/4! + 91*x^5/5! + 756*x^6/6! +...
MATHEMATICA
terms = 20; A[_] = 0;
Do[A[x_] = 1+Integrate[A[x]^2 + x A[x]^3, x]+O[x]^terms // Normal, terms];
CoefficientList[A[x], x] Range[0, terms-1]! (* Jean-François Alcover, Oct 27 2018 *)
PROG
(PARI) {a(n)=local(A=1); for(n=0, n, A=1+A*intformal(1+x*A+x*O(x^n))); n!*polcoeff(A, n)}
(PARI) {a(n)=n!*polcoeff(deriv(serreverse(sum(m=1, n\3+1, x^(3*m-2)/(3*m-2)!-x^(3*m-1)/(3*m-1)!+x^2*O(x^n)))), n)}
CROSSREFS
Sequence in context: A215475 A120056 A125788 * A259903 A101220 A078456
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 21 2011
STATUS
approved